The temperature dependence of spectra can reveal important insights into the structural and dynamical behavior of the system being probed. In the case of linear spectra, this has been exploited to investigate the thermodynamic driving forces governing the spectral response. Indeed, the temperature derivative of a spectrum can be used to obtain effective energetic and entropic profiles as a function of the measured frequency.
View Article and Find Full Text PDFJ Colloid Interface Sci
July 2024
Solvent expulsion away from an intervening region between two approaching particles plays important roles in particle aggregation yet remains poorly understood. In this work, we use metadynamics molecular simulations to study the free energy landscape of removing water molecules from gibbsite and pyrophyllite slit pores representing the confined spaces between two approaching particles. For gibbsite, removing water from the intervening region is both entropically and enthalpically unfavorable.
View Article and Find Full Text PDFThe structural and dynamical properties of nanoconfined solutions can differ dramatically from those of the corresponding bulk systems. Understanding the changes induced by confinement is central to controlling the behavior of synthetic nanostructured materials and predicting the characteristics of biological and geochemical systems. A key outstanding issue is how the molecular-level behavior of nanoconfined electrolyte solutions is reflected in different experimental, particularly spectroscopic, measurements.
View Article and Find Full Text PDFWater in nano-scale confining environments is a key element in many biological, material, and geological systems. The structure and dynamics of the liquid can be dramatically modified under these conditions. Probing these changes can be challenging, but vibrational spectroscopy has emerged as a powerful tool for investigating their behavior.
View Article and Find Full Text PDF