Publications by authors named "Hasina H Outtz"

Notch is a critical regulator of angiogenesis, vascular differentiation, and vascular integrity. We investigated whether Notch signaling affects macrophage function during retinal angiogenesis in mice. Retinal macrophage recruitment and localization in mice with myeloid-specific loss of Notch1 was altered, as these macrophages failed to localize at the leading edge of the vascular plexus and at vascular branchpoints.

View Article and Find Full Text PDF

Several signaling pathways, including the Notch pathway, can modulate TLR activation to achieve responses most appropriate for the environment. One mechanism of TLR-Notch cross-talk is TLR-induced expression of Notch ligands Jagged and Delta that feed back to engage Notch receptors on TLR-activated cells. In this study, we investigated mechanisms by which TLRs induce Notch ligand expression in primary macrophages.

View Article and Find Full Text PDF

We investigated whether Notch signaling plays a role in regulating macrophage responses to inflammation. In a wound healing assay, macrophage recruitment was decreased in Notch1(+/-) mice, and the wounds were characterized by decreased TNF-α expression. As wound healing progressed, Notch1(+/-) wounds had increased vascularization and collagen deposition compared with wild-type wounds.

View Article and Find Full Text PDF

Notch is a critical regulator of angiogenesis and arterial specification. We show that ectopic expression of activated Notch1 induces endothelial morphogenesis in human umbilical vein endothelial cells (HUVEC) in a VEGFR-1-dependent manner. Notch1-mediated upregulation of VEGFR-1 in HUVEC increased their responsiveness to the VEGFR-1 specific ligand, Placental Growth Factor (PlGF).

View Article and Find Full Text PDF

Cancer/testis (CT) antigens are the protein products of germ line-associated genes that are activated in a wide variety of tumors and can elicit autologous cellular and humoral immune responses. CT antigens can be divided between those that are encoded on the X chromosome (CT-X antigens) and those that are not (non-X CT antigens). Among the CT-X antigens, the melanoma antigen gene (MAGE) family, defined by a shared MAGE homology domain (MHD), is the largest.

View Article and Find Full Text PDF