Crafting effective deep learning models for medical image analysis is a complex task, particularly in cases where the medical image dataset lacks significant inter-class variation. This challenge is further aggravated when employing such datasets to generate synthetic images using generative adversarial networks (GANs), as the output of GANs heavily relies on the input data. In this research, we propose a novel filtering algorithm called Cosine Similarity-based Image Filtering (CosSIF).
View Article and Find Full Text PDFUncontrolled proliferation of B-lymphoblast cells is a common characterization of Acute Lymphoblastic Leukemia (ALL). B-lymphoblasts are found in large numbers in peripheral blood in malignant cases. Early detection of the cell in bone marrow is essential as the disease progresses rapidly if left untreated.
View Article and Find Full Text PDFMelanoma is regarded as the most threatening among all skin cancers. There is a pressing need to build systems which can aid in the early detection of melanoma and enable timely treatment to patients. Recent methods are geared towards machine learning based systems where the task is posed as image recognition, tag dermoscopic images of skin lesions as melanoma or non-melanoma.
View Article and Find Full Text PDFWith the recent developments in deep learning, automatic cell segmentation from images of microscopic examination slides seems to be a solved problem as recent methods have achieved comparable results on existing benchmark datasets. However, most of the existing cell segmentation benchmark datasets either contain a single cell type, few instances of the cells, not publicly available. Therefore, it is unclear whether the performance improvements can generalize on more diverse datasets.
View Article and Find Full Text PDFComput Biol Med
September 2021
The U-Net architecture, built upon the fully convolutional network, has proven to be effective in biomedical image segmentation. However, U-Net applies skip connections to merge semantically different low- and high-level convolutional features, resulting in not only blurred feature maps, but also over- and under-segmented target regions. To address these limitations, we propose a simple, yet effective end-to-end depthwise encoder-decoder fully convolutional network architecture, called Sharp U-Net, for binary and multi-class biomedical image segmentation.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2021
Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels.
View Article and Find Full Text PDFSoc Netw Anal Min
February 2021
Motivated by the lack of publicly available datasets of chest radiographs of positive patients with coronavirus disease 2019 (COVID-19), we build the first-of-its-kind open dataset of synthetic COVID-19 chest X-ray images of high fidelity using an unsupervised domain adaptation approach by leveraging class conditioning and adversarial training. Our contributions are twofold. First, we show considerable performance improvements on COVID-19 detection using various deep learning architectures when employing synthetic images as additional training set.
View Article and Find Full Text PDFMalaria, one of the leading causes of death in underdeveloped countries, is primarily diagnosed using microscopy. Computer-aided diagnosis of malaria is a challenging task owing to the fine-grained variability in the appearance of some uninfected and infected class. In this paper, we transform a malaria parasite object detection dataset into a classification dataset, making it the largest malaria classification dataset (63,645 cells), and evaluate the performance of several state-of-the-art deep neural network architectures pretrained on both natural and medical images on this new dataset.
View Article and Find Full Text PDFSkin lesion datasets consist predominantly of normal samples with only a small percentage of abnormal ones, giving rise to the class imbalance problem. Also, skin lesion images are largely similar in overall appearance owing to the low inter-class variability. In this paper, we propose a two-stage framework for automatic classification of skin lesion images using adversarial training and transfer learning toward melanoma detection.
View Article and Find Full Text PDF