Histone demethylase (HDM) play crucial roles in regulating plant growth and environmental adaptation. In this study, the HDM gene family in melon was identified by bioinformatics methods and the expression patterns of the CmHDM family members in different melon tissues were analyzed using transcriptome data. The results showed that 20 genes were identified in the melon genome, which were unevenly distributed across each chromosome.
View Article and Find Full Text PDFThe Single-cell Assay for Transposase-Accessible Chromatin with high throughput sequencing (scATAC-seq) has gained increasing popularity in recent years, allowing for chromatin accessibility to be deciphered and gene regulatory networks (GRNs) to be inferred at single-cell resolution. This cutting-edge technology now enables the genome-wide profiling of chromatin accessibility at the cellular level and the capturing of cell-type-specific cis-regulatory elements (CREs) that are masked by cellular heterogeneity in bulk assays. Additionally, it can also facilitate the identification of rare and new cell types based on differences in chromatin accessibility and the charting of cellular developmental trajectories within lineage-related cell clusters.
View Article and Find Full Text PDFBackground: Proteins with the jumonji (JMJ)-C domain belong to the histone demethylase family and contribute to reverse histone methylation. Although JMJ-C family genes have an essential role in regulating plant growth and development, the characterization of the JMJ-C family genes in melon has not been uncovered.
Results: In this study, a total of 17 JMJ-C proteins were identified in melon (Cucumis melo L.
Due to the relatively brief domestication history of sugar beet (Beta vulgaris ssp. vulgaris), our understanding of the genomic diversity and functional genes in its cultivars is limited, resulting in slow breeding progress. To address this issue, a total of 306 germplasm materials of major cultivars and breeding lines from China, the USA, and Europe were selected for genome resequencing.
View Article and Find Full Text PDFThe cultivation of herbicide-resistant crops is an effective tool for weed management in agriculture. Weed control in flax ( L.) remains challenging due to the lack of available herbicide-resistant cultivars.
View Article and Find Full Text PDFSubtilisin-like proteases (subtilases) are found in almost all plant species and are involved in regulating various biotic and abiotic stresses. Although the literature on subtilases in different plant species is vast, the gene function of the serine peptidase S8 family and its maize subfamily is still unknown. Here, a bioinformatics analysis of this gene family was conducted by describing gene structure, conserved motifs, phylogenetic relationships, chromosomal distributions, gene duplications, and promoter cis-elements.
View Article and Find Full Text PDFMelon () is an important economic crop cultivated worldwide. A unique gene family plays a crucial role in regulating plant growth and fruit development, but many family genes and their function have not been well-characterized in melon. In the present study, we performed genome-wide identification and bioinformatics analysis and identified 24 family genes that contain integrated and conserved IQ67 domain in the melon genome.
View Article and Find Full Text PDFIschemic stroke activates toll-like receptor 4 (TLR4) signaling, resulting in proinflammatory polarization of microglia and secondary neuronal damage. Herein, we report a novel lipid-nanoparticle (LNP)-mediated knockdown of TLR4 in microglia and amelioration of neuroinflammation in a mouse model of transient middle cerebral artery occlusion (tMCAO). siRNA against TLR4 (siTLR4) complexed to the novel LNP (siTLR4/DoGo310), which was based on a dioleoyl-conjugated short peptidomimetic (denote DoGo310), was readily internalized by the oxygen-glucose-deprived (OGD) mouse primary microglia, knocked-down TLR4, and polarized the cell to the anti-inflammatory phenotype in vitro.
View Article and Find Full Text PDFWe identified 66 melon SAUR genes by bioinformatic analyses. CmSAUR19, 38, 58, 62 genes are specifically expressed in different stages of fruit growth, suggesting their participation in regulating fruit development. Auxin plays a crucial role in plant growth by regulating the multiple auxin response genes.
View Article and Find Full Text PDFThe () transcription factor family is one of the largest transcription factor families in plants and plays crucial roles in plant development. Melon is an important horticultural plant as well as an attractive model plant for studying fruit ripening. However, the gene family of melon has not yet been identified, and its functions in fruit growth and ripening are seldom researched.
View Article and Find Full Text PDFFruit ripening is influenced by multiple plant hormones and the regulation of genes. However, studies on posttranscriptional regulators (e.g.
View Article and Find Full Text PDFThe No apical meristem-Arabidopsis transcription activation factor-Cup-shaped cotyledon (NAC) proteins play vital roles in plant development processes and responses to abiotic stress. In this study, 146 unigenes were identified as NAC genes from wild Medicago falcata L. by RNA sequencing.
View Article and Find Full Text PDFMicroglia polarization plays an important role in poststroke recovery. Inhibition of proinflammatory (M1) polarization and promotion of anti-inflammatory (M2) polarization of microglia are potential therapeutic strategies for inflammation reduction and neuronal recovery after stroke. Here, we evaluated the (CNS)-targeted short interfering RNA (siRNA) delivery ability of functionalized curdlan nanoparticles (CMI) and investigated the nuclear factor-κB (NF-κB) p65 silencing efficiency of CMI-mediated siRNA in microglia, as well as the resulting neuroprotective effect of microglia polarization and neuroprotection in vitro and in vivo.
View Article and Find Full Text PDFNatural carbohydrate polymer-based nanoparticles have great biocompatibility that is required for the safe delivery of various drugs including nucleic acid therapeutics. Herein, we designed curdlan-based nanoparticles for cancer cell targeted delivery of short interfering RNA (siRNA). iRGD peptide conjugated 6-amino-6-deoxy curdlan specifically delivered siRNA to integrin expressing cancer cells.
View Article and Find Full Text PDFStacked traits have become an important trend in the current development of genomically modified crops. The bidirectional promoter can not only prevent the co-suppression of multigene expression, but also increase the efficiency of the cultivation of transgenic plants with multigenes. In , and are head-to-head gene pairs located on chromosome D09.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2015
The calcium ion (Ca(2+)), which functions as a second messenger, plays an important role in plants' responses to various abiotic stresses, and Ca(2+)/H(+) exchangers (CAXs) are an important part of this process. In this study, we isolated and characterized a putative Ca(2+)/H(+) exchanger gene (SeCAX3) from Salicornia europaea L., a succulent, leafless euhalophyte.
View Article and Find Full Text PDFThe tripeptide reduced glutathione (GSH; γ-glutamate [Glu]-cysteine [Cys]-glycine) is a major endogenous antioxidant in both animal and plant cells. It also functions as a neurotransmitter mediating communication among neurons in the central nervous system of animals through modulating specific ionotropic Glu receptors (GLRs) in the membrane. Little is known about such signaling roles in plant cells.
View Article and Find Full Text PDFDREB transcription factors play an important role in tolerance to abiotic stress in high plants. In this work, two new DRE-binding protein genes MfDREB1 and MfDREB1s cDNA that encoded an AP2/EREBP type transcription factor were isolated by RT-PCR from Medicago falcate seedlings. Sequence analysis showed MfDREB1 and MfDREB1s were almost identical except that there was a 202bp fragment at the 3' end of the MfDREB1s cDNA that is absent in MfDREB1 cDNA.
View Article and Find Full Text PDFMelons have short shelf-lives due to fruit ripening caused by ethylene production. The 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene is essential for ethylene biosynthesis. As fruit ripening in other fruit crops can be deterred by down-regulation of ACC oxidase expression, we have carried out similar work to improve fruit quality and shelf-life of the melon Cucumis melo.
View Article and Find Full Text PDFLarge conductance Ca(2+)-activated K(+) (BK) channels are responsible for changes in chemical and physical signals such as Ca(2+), Mg(2+) and membrane potentials. Previously, we reported that a BK channel cloned from chick heart (SAKCaC) is activated by membrane stretch. Molecular cloning and subsequent functional characterization of SAKCaC have shown that both the membrane stretch and intracellular Ca(2+) signal allosterically regulate the channel activity via the linker of the gating ring complex.
View Article and Find Full Text PDFBackground: Several studies have shown that the clinical phenotypes of dentinogenesis imperfecta type II (DGI-II) may be caused by mutations in dentin sialophosphoprotein (DSPP). However, no previous studies have documented the clinical phenotype and genetic basis of DGI-II in a Mongolian family from China.
Methods: We identified a large five-generation Mongolian family from China with DGI-II, comprising 64 living family members of whom 22 were affected.
The ethylene binding domain (EBD) of the Arabidopsis thaliana ETR1 receptor is modeled as three membrane-spanning helices. We surveyed ethylene binding activity in different kingdoms and performed a bioinformatic analysis of the EBD. Ethylene binding is confined to land plants, Chara, and a group of cyanobacteria but is largely absent in other organisms, consistent with our finding that EBD-like sequences are overrepresented among plant and cyanobacterial species.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
November 2002
According to the genomic sequence of foreign four PLRV isolates, three pairs of specific primer were designed and synthesized. The cDNA of the ORF2a gene of PLRV-Ch was synthesized by reverse transcription and followed by Polymerase Chain Reaction amplication. The synthesized 3' and 5' cDNA fragment of the PLRV-Ch ORF2a gene were inserted into pUC19 and cloned in E.
View Article and Find Full Text PDF