Publications by authors named "Hashem Shahin"

The genetic characterization of a common phenotype for an entire population reveals both the causes of that phenotype for that place and the power of family-based, population-wide genomic analysis for gene and mutation discovery. We characterized the genetics of hearing loss throughout the Palestinian population, enrolling 2,198 participants from 491 families from all parts of the West Bank and Gaza. In Palestinian families with no prior history of hearing loss, we estimate that 56% of hearing loss is genetic and 44% is not genetic.

View Article and Find Full Text PDF
Article Synopsis
  • Essential tremor is a common movement disorder that can lead to significant disability, and its connection to Parkinson's disease is still being studied.
  • Researchers analyzed a Turkish family with a history of both conditions and identified a specific gene variant (HTRA2 p.G399S) that appears to be responsible for both essential tremor and Parkinson's disease.
  • The study found that individuals with two copies of this variant experience earlier and more severe symptoms of essential tremor and are more likely to develop Parkinson’s signs later in life, suggesting a genetic link between the two disorders.
View Article and Find Full Text PDF

Genes disrupted in schizophrenia may be revealed by de novo mutations in affected persons from otherwise healthy families. Furthermore, during normal brain development, genes are expressed in patterns specific to developmental stage and neuroanatomical structure. We identified de novo mutations in persons with schizophrenia and then mapped the responsible genes onto transcriptome profiles of normal human brain tissues from age 13 weeks gestation to adulthood.

View Article and Find Full Text PDF

Hereditary hearing loss is characterized by a high degree of genetic heterogeneity. Here we present OTOGL mutations, a homozygous one base pair deletion (c.1430 delT) causing a frameshift (p.

View Article and Find Full Text PDF

Autosomal-recessive inheritance, severe to profound sensorineural hearing loss, and partial agenesis of the corpus callosum are hallmarks of the clinically well-established Chudley-McCullough syndrome (CMS). Although not always reported in the literature, frontal polymicrogyria and gray matter heterotopia are uniformly present, whereas cerebellar dysplasia, ventriculomegaly, and arachnoid cysts are nearly invariant. Despite these striking brain malformations, individuals with CMS generally do not present with significant neurodevelopmental abnormalities, except for hearing loss.

View Article and Find Full Text PDF

Background: Identification of genes responsible for medically important traits is a major challenge in human genetics. Due to the genetic heterogeneity of hearing loss, targeted DNA capture and massively parallel sequencing are ideal tools to address this challenge. Our subjects for genome analysis are Israeli Jewish and Palestinian Arab families with hearing loss that varies in mode of inheritance and severity.

View Article and Find Full Text PDF

The motor protein myosin IIIA is critical for maintenance of normal hearing. Homozygosity and compound heterozygosity for loss-of-function mutations in MYO3A, which encodes myosin IIIA, are responsible for inherited human progressive hearing loss DFNB30. To further evaluate this hearing loss, we constructed a mouse model, Myo3a(KI/KI), that harbors the mutation equivalent to the nonsense allele responsible for the most severe human phenotype.

View Article and Find Full Text PDF
Article Synopsis
  • * A specific form of progressive hearing loss, DFNA51, has been linked to a genetic mutation in the TJP2 gene, which is critical for tight junction integrity in the inner ear.
  • * Overexpression of TJP2 in affected individuals leads to changes that increase cell vulnerability to apoptosis, suggesting a connection between TJP2 and age-related hearing loss mechanisms.
View Article and Find Full Text PDF
Article Synopsis
  • - Massively parallel sequencing technologies, including exome sequencing, are significantly speeding up the discovery of genes linked to human disorders by allowing researchers to analyze genetic variations in targeted regions.
  • - Using exome sequencing and homozygosity mapping, researchers quickly identified a single harmful mutation responsible for nonsyndromic hearing loss (DFNB82) in a closely related Palestinian family.
  • - The identified mutation results in a truncated form of the GPSM2 protein, which is important for maintaining cell structure and function in the inner ear, suggesting that disruptions in cell polarity may contribute to hearing loss.
View Article and Find Full Text PDF

Background: Moderate to severe prelingual hearing impairment (DFNB84) was observed in an extended consanguineous Palestinian kindred. All affected relatives shared a 12.5 MB homozygous haplotype on chromosome 12q21 with lod score 4.

View Article and Find Full Text PDF

More than 270 million people worldwide have hearing loss that affects normal communication. Although astonishing progress has been made in the identification of more than 50 genes for deafness during the past decade, the majority of deafness genes are yet to be identified. In this study, we mapped a previously unknown autosomal-recessive nonsyndromic sensorineural hearing loss locus (DFNB91) to chromosome 6p25 in a consanguineous Turkish family.

View Article and Find Full Text PDF

Calcium oxalate stone formation occurs under pathological conditions and accounts for more than 80% of all types of kidney stones. In the current study, we show for the first time that calcium oxalate stones are formed in the mouse inner ear of a genetic model for hearing loss and vestibular dysfunction in humans. The vestibular system within the inner ear is dependent on extracellular tiny calcium carbonate minerals for proper function.

View Article and Find Full Text PDF

In communities with high rates of consanguinity and consequently high prevalence of recessive phenotypes, homozygosity mapping with SNP arrays is an effective approach for gene discovery. In 20 Palestinian kindreds with prelingual nonsyndromic hearing loss, we generated homozygosity profiles reflecting linkage to the phenotype. Family sizes ranged from small nuclear families with two affected children, one unaffected sibling, and parents to multigenerational kindreds with 12 affected relatives.

View Article and Find Full Text PDF

Recessively inherited phenotypes are frequent in the Palestinian population, as the result of a historical tradition of marriages within extended kindreds, particularly in isolated villages. In order to characterise the genetics of inherited hearing loss in this population, we worked with West Bank schools for the deaf to identify children with prelingual, bilateral, severe to profound hearing loss not attributable to infection, trauma or other known environmental exposure. Of 156 families enrolled, hearing loss in 17 families (11 per cent) was due to mutations in GJB2 (connexin 26), a smaller fraction of GJB2-associated deafness than in other populations.

View Article and Find Full Text PDF

In a large consanguineous Palestinian kindred, we previously mapped DFNB28--a locus associated with recessively inherited, prelingual, profound sensorineural hearing impairment--to chromosome 22q13.1. We report here that mutations in a novel 218-kDa isoform of TRIOBP (TRIO and filamentous actin [F-actin] binding protein) are associated with DFNB28 hearing loss in a total of nine Palestinian families.

View Article and Find Full Text PDF

Normal vision in Drosophila requires NINAC, a class III myosin. Class III myosins are hybrid motor-signaling molecules, with an N-terminal kinase domain, highly conserved head and neck domains, and a class III-specific tail domain. In Drosophila rhabdomeres, NINAC interacts with actin filaments and with a PDZ scaffolding protein to organize the phototransduction machinery into a signaling complex.

View Article and Find Full Text PDF

In some Palestinian communities, the prevalence of inherited prelingual deafness is among the highest in the world. As an initial step towards understanding the genetic causes of hearing loss in the Palestinian population, 48 independently ascertained probands with non-syndromic hearing loss were evaluated for mutations in the connexin 26 gene. Of the 48 deaf probands, 11 (23%) were homozygous or compound heterozygous for mutations in GJB2.

View Article and Find Full Text PDF