A number of biologically relevant glycoconjugates possess 1,2- cis-furanosidic linkages, a class of glycosidic bond that remains challenging to introduce with high stereoselectivity. In this paper, we report an approach to one family of such linkages, α-xylofuranosides, via the use of thioglycoside donors possessing a conformationally restricting xylylene protecting group. The method was shown to provide the desired targets in good to excellent yield and stereoselectivity.
View Article and Find Full Text PDFWe designed, prepared, and characterized three cup-shaped cavitands 1-3 for trapping organophosphonates (O═PR(OR')2, 118-197 Å(3)) whose shape and size correspond to G-type chemical warfare agents (132-186 Å(3)). With the assistance of computational (molecular dynamics) and experimental ((1)H NMR spectroscopy) methods, we found that host [1-H3](3+) orients its protonated histamine residues at the rim outside the cavity, in bulk water. In this unfolded form, the cavitand traps a series of organophosphonates 5-13 (K(app) = 87 ± 1 to 321 ± 6 M(-1) at 298.
View Article and Find Full Text PDFVaccinia VH1-related (VHR) is a dual specificity phosphatase that consists of only a single catalytic domain. Although several protein substrates have been identified for VHR, the elements that control the in vivo substrate specificity of this enzyme remain unclear. In this work, the in vitro substrate specificity of VHR was systematically profiled by screening combinatorial peptide libraries.
View Article and Find Full Text PDFWe used dynamic (1)H NMR spectroscopic methods to examine the kinetics and thermodynamics of CH(3)CCl(3) (2) entering and leaving the gated molecular basket 1. We found that the encapsulation is first-order in basket 1 and guest 2, while the decomplexation is zeroth-order in the guest. Importantly, the interchange mechanism in which a molecule of CH(3)CCl(3) directly displaces the entrapped CH(3)CCl(3) was not observed.
View Article and Find Full Text PDFIn this report, the conformations of a series of mono- and oligoarabinofuranosides were probed through the use of umbrella sampling simulations with the AMBER force field and the GLYCAM carbohydrate parameter set. The rotamer population distribution about the exocyclic C4-C5 bonds and the puckering distributions of the rings obtained from these umbrella sampling simulations were found to be in excellent agreement with those obtained from conventional long MD simulations for small monosaccharide fragments. For larger systems, the conventional MD approach becomes impractical, and we propose the use of umbrella sampling to circumvent poor sampling of certain conformations.
View Article and Find Full Text PDFJ Chem Theory Comput
February 2011
A method for the conformational analysis of furanose rings that involves the prediction of (3)JH,H that can be compared directly to experimental values is investigated. This method, which differs from the traditional PSEUROT approach for conformational studies of furanose rings, was previously applied to a number of α-d-arabinofuranosides and enabled the direct comparison of (3)JH,H values to those obtained from NMR spectroscopy. In this paper, the use of this approach to study the conformational preferences of oligosaccharides containing β-linked arabinofuranose residues is reported.
View Article and Find Full Text PDFA molecular dynamics (MD) investigation on a series of oligo-α-arabinofuranosides (1-8) using the AMBER force field and the GLYCAM carbohydrate parameter set is reported. The validation of the method was carried out by direct comparison of experimental vicinal proton-proton coupling constants ((3)JH,H) with those obtained by using an empirically determined Karplus equation and density functional theory (DFT)-derived relationships specifically tailored for α-arabinofuranosyl systems. A simple code was developed to implement the determination of (3)JH,H by applying these relationships to the probability distributions of rotamers and ring conformations displayed by the simulations.
View Article and Find Full Text PDFA series of investigations probing the mechanism of the 2,3-anhydrosugar migration-glycosylation reaction were performed using a thioglycoside with the D-lyxo stereochemistry as the substrate. Among the work reported are the results of quantum mechanical calculations, NMR studies, the measurement of alpha-deuterium kinetic isotope effects, and the synthesis of a series of substrate analogues. All studies point to a consistent finding: that the reaction proceeds through an oxocarbenium ion intermediate, not an episulfonium ion as previously suggested.
View Article and Find Full Text PDFJ Chem Theory Comput
February 2009
Furanosides are important constituents of a number of glycoconjugates from many microorganisms. The highly flexible nature of these furanosyl moieties is believed to contribute significantly to their role in biological processes. Therefore, an understanding of the conformational preferences of these molecules is an important area of research.
View Article and Find Full Text PDF