Splice-switching oligonucleotides (SSOs) are antisense compounds that act directly on pre-mRNA to modulate alternative splicing (AS). This study demonstrates the value that artificial intelligence/machine learning (AI/ML) provides for the identification of functional, verifiable, and therapeutic SSOs. We trained XGboost tree models using splicing factor (SF) pre-mRNA binding profiles and spliceosome assembly information to identify modulatory SSO binding sites on pre-mRNA.
View Article and Find Full Text PDFAptamer ligand discovery against multiple molecules expressed on whole cells is an essential component in molecular tool development. However, owing to their intrinsic structural characteristics, cell-surface receptors have proven to be challenging targets in ligand discovery. Several variants to systematic evolution of ligands by exponential enrichment (SELEX) have been introduced to address the ″target problem″ for aptamer screening.
View Article and Find Full Text PDFWith the success of RNA-based therapeutic drugs, the demand has increased for sophisticated nucleic-acid-based targeting agents. Nucleic acid aptamers (NAAs), in this regard, represent a suitable class of molecules with synthetic versatility. Aptamers are composed of single-stranded RNA/DNA/XNA molecules, which can be identified using a method called systematic evolution of ligands by exponential enrichment (SELEX) against any molecule.
View Article and Find Full Text PDFHere we are reporting, for the first time, a ligand-guided selection (LIGS) experiment using an artificially expanded genetic information system (AEGIS) to successfully identify an AEGIS-DNA aptamer against T cell receptor-CD3ε expressed on Jurkat.E6 cells. Thus, we have effectively combined the enhanced diversity of an AEGIS DNA library with LIGS to develop a superior screening platform to discover superior aptamers.
View Article and Find Full Text PDFTo discover DNA ligands against a predetermined receptor protein complex, we introduce a comprehensive version of ligand-guided selection (LIGS). LIGS is, itself, a variant of systematic evolution of ligands by exponential enrichment (SELEX). Herein, we have optimized LIGS to identify higher affinity aptamers with high specificity.
View Article and Find Full Text PDFExploiting a variant of SELEX called "Ligand-Guided Selection" (LI-GS), we recently identified two novel truncated G-rich aptamers, called R1.2 and R1.3, specific for membrane-bound IgM (mIgM), the hallmark of B cells.
View Article and Find Full Text PDFNucleic Acid Aptamers (NAAs) are a class of synthetic DNA or RNA molecules that bind specifically to their target. We recently introduced an aptamer termed R1.2 against membrane Immunoglobulin M (mIgM) expressing B-cell neoplasms using Ligand Guided Selection (LIGS).
View Article and Find Full Text PDFNucleic acid aptamers (NAAs) are short synthetic DNA or RNA molecules that specifically fold into distinct three-dimensional structures able to specifically recognize a target. While NAAs show unprecedented promise in a variety of applications, including sensing, therapeutics and diagnostics, one major limitation involves the lack of stability towards omnipresent nucleases. Therefore, we herein report a systematic truncation and incorporation of 2'-O-methyl bases to a DNA aptamer, which results in increased stability without affecting affinity.
View Article and Find Full Text PDFAptamers are synthetic, short nucleic acid molecules capable of specific target recognition. Aptamers are selected using a screening method termed Systematic Evolution of Ligands by Exponential enrichment (SELEX). We recently have introduced a variant of SELEX called "Ligand-Guided-Selection" (LIGS) that allows the identification of specific aptamers against known cell-surface proteins.
View Article and Find Full Text PDFWe recently introduced a screening technology termed ligand-guided selection, (LIGS), to selectively identify target-specific aptamers from an evolved cell-SELEX library. Cell-SELEX utilizes a large combinatorial single-stranded oligonucleotide library and progressively selects DNA ligands against whole cells with variable DNA-binding affinities and specificities by repeated rounds of partition and amplification. LIGS exploits the partition step and introduces a secondary, pre-existing high-affinity monoclonal antibody (mAb) ligand to outcompete and elute specific aptamers towards the binding target of the antibody, not the cell.
View Article and Find Full Text PDFWe report on a new strategy for identifying highly specific aptamers against a predetermined epitope of a target. Termed "ligand-guided selection" (LIGS), this method uniquely exploits the selection step, the core of SELEX (Systematic Evolution Exponential enrichment). LIGS uses a naturally occurring stronger and highly specific bivalent binder, an antibody (Ab) interacting with its cognate antigen to outcompete specific aptamers from a partially enriched SELEX pool, as a strategy.
View Article and Find Full Text PDFVertebrate muscle development occurs through sequential differentiation of cells residing in somitic mesoderm - a process that is largely governed by transcriptional regulators. Our recent spatiotemporal microarray study in zebrafish has identified functionally uncharacterized transcriptional regulators that are expressed at the initial stages of myogenesis. cited3 is one such novel gene encoding a transcriptional coactivator, which is expressed in the precursors of oxidative slow-twitch myofibers.
View Article and Find Full Text PDF