Complex coacervates play essential roles in various biological processes and applications. Although substantial progress has been made in understanding the molecular interactions driving complex coacervation, the mechanisms stabilizing coacervates against coalescence remain experimentally challenging and not fully elucidated. We recently showed that polydiallyldimethylammonium chloride (PDDA) and adenosine triphosphate (ATP) coacervates stabilize upon their transfer to deionized (DI) water.
View Article and Find Full Text PDFPolymer crystallization is a long-standing interesting problem both in fundamental polymer physics and in polymer manufacturing. Fundamentally, the connectivity of the macromolecules provides a unique feature for the study of nucleation and growth of crystals in contrast to the crystallization of smaller molecules. In addition, understanding the crystallization in polymers is industrially important due to the necessity of its control to achieve mechanically durable plastic materials.
View Article and Find Full Text PDFNucleation and growth of crystalline phases play an important role in a variety of physical phenomena, ranging from freezing of liquids to assembly of colloidal particles. Understanding these processes in the context of colloidal crystallization is of great importance for predicting and controlling the structures produced. In many systems, crystallites that nucleate have structures differing from those expected from bulk equilibrium thermodynamic considerations, and this is often attributed to kinetic effects.
View Article and Find Full Text PDFBinary superlattices constructed from nano- or micron-sized colloidal particles have a wide variety of applications, including the design of advanced materials. Self-assembly of such crystals from their constituent colloids can be achieved in practice by, among other means, the functionalization of colloid surfaces with single-stranded DNA sequences. However, when driven by DNA, this assembly is traditionally premised on the pairwise interaction between a single DNA sequence and its complement, and often relies on particle size asymmetry to entropically control the crystalline arrangement of its constituents.
View Article and Find Full Text PDFMost binary superlattices created using DNA functionalization rely on particle size differences to achieve compositional order and structural diversity. Here we study two-dimensional (2D) assembly of DNA-functionalized micron-sized particles (DFPs), and employ a strategy that leverages the tunable disparity in interparticle interactions, and thus enthalpic driving forces, to open new avenues for design of binary superlattices that do not rely on the ability to tune particle size (i.e.
View Article and Find Full Text PDFWe systematically investigate the assembly of binary multi-flavored colloidal mixtures in two dimensions. In these mixtures all pairwise interactions between species may be tuned independently. This introduces an additional degree of freedom over more traditional binary mixtures with fixed mixing rules, which is anticipated to open new avenues for directed self-assembly.
View Article and Find Full Text PDF