Publications by authors named "Hasan T Imam"

Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1.

View Article and Find Full Text PDF

1,4-Benzoxazines are important motifs in many pharmaceuticals and can be formed by a reaction sequence involving the oxidation of -aminophenols to their corresponding quinone imine followed by an inverse electron demand Diels-Alder (IEDDA) cycloaddition with a suitable dienophile. Reported herein is the development of a reaction sequence that employs horseradish peroxidase to catalyze the oxidation of the aminophenols prior to the IEDDA as a more sustainable alternative to the use of conventional stoichiometric oxidants. The synthesis of 10 example benzoxazines is demonstrated in this "one-pot, two-step" procedure with yields between 42% and 92%.

View Article and Find Full Text PDF

Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1.

View Article and Find Full Text PDF

Reported herein is an entrapment method for enzyme immobilization that does not require the formation of new covalent bonds. Ionic liquid supramolecular gels are formed containing enzymes that can be shaped into gel beads and act as recyclable immobilized biocatalysts. The gel was formed from two components, a hydrophobic phosphonium ionic liquid and a low molecular weight gelator derived from the amino acid phenylalanine.

View Article and Find Full Text PDF

Ionic liquids have unique chemical properties that have fascinated scientists in many fields. The effects of adding ionic liquids to biocatalysts are many and varied. The uses of ionic liquids in biocatalysis include improved separations and phase behaviour, reduction in toxicity, and stabilization of protein structures.

View Article and Find Full Text PDF

Materials have been developed that encapsulate a homogeneous catalyst and enable it to operate as a heterogeneous catalyst in water. A hydrophobic ionic liquid within the material was used to dissolve Fe-TAML and keep it from leaching into the aqueous phase. One-pot processes were used to entrap Fe-TAML in basic ionic liquid gels, and ionic liquid gel spheres structured via a modified Stöber synthesis forming SiO particles of uniform size.

View Article and Find Full Text PDF

The dynamics of metal binding to and transfer from metalloproteins involved in metal homeostasis are important for understanding cellular distribution of metal ions. The dicotyledonous plant Arabidopsis thaliana has two type 4 seed-specific metallothionein homologues, MT4a and MT4b, with likely roles in zinc(II) homeostasis. These two metallothioneins are 84% identical, with full conservation of all metal-binding cysteine and histidine residues.

View Article and Find Full Text PDF

With the increased incidence of tuberculosis (TB) caused by Mycobacterium tuberculosis there is an urgent need for new and better anti-tubercular drugs. N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a key enzyme in the succinylase pathway for the biosynthesis of meso-diaminopimelic acid (meso-DAP) and L-lysine. DapE is a zinc containing metallohydrolase which hydrolyses N-succinyl L,L diaminopimelic acid (L,L-NSDAP) to L,L-diaminopimelic acid (L,L-DAP) and succinate.

View Article and Find Full Text PDF

More than 30 years have passed since the discovery of the first plant metallothionein in wheat embryos, from which the emergence of a uniquely diverse metallothionein family with a fascinating array of structural nuances and molecular properties has been witnessed. Metallothioneins are not only constitutively expressed, but the production of different types of plant metallothionein is also stimulated by a myriad of endogenous and exogenous agents in both a temporally and spatially regulated manner. This ubiquitous, yet discrete expression of metallothioneins not only signifies their importance for plant survival and development, but also suggests a functional divergence for the individual plant metallothionein subfamilies.

View Article and Find Full Text PDF