The constantly evolving human-machine interaction and advancement in sociotechnical systems have made it essential to analyze vital human factors such as mental workload, vigilance, fatigue, and stress by monitoring brain states for optimum performance and human safety. Similarly, brain signals have become paramount for rehabilitation and assistive purposes in fields such as brain-computer interface (BCI) and closed-loop neuromodulation for neurological disorders and motor disabilities. The complexity, non-stationary nature, and low signal-to-noise ratio of brain signals pose significant challenges for researchers to design robust and reliable BCI systems to accurately detect meaningful changes in brain states outside the laboratory environment.
View Article and Find Full Text PDFA passive brain-computer interface (BCI) based upon functional near-infrared spectroscopy (fNIRS) brain signals is used for earlier detection of human drowsiness during driving tasks. This BCI modality acquired hemodynamic signals of 13 healthy subjects from the right dorsolateral prefrontal cortex (DPFC) of the brain. Drowsiness activity is recorded using a continuous-wave fNIRS system and eight channels over the right DPFC.
View Article and Find Full Text PDFBackground: Neonatal seizures are a common occurrence in clinical settings, requiring immediate attention and detection. Previous studies have proposed using manual feature extraction coupled with machine learning, or deep learning to classify between seizure and non-seizure states.
New Method: In this paper a deep learning based approach is used for neonatal seizure classification using electroencephalogram (EEG) signals.
As accessibility of networked devices becomes more and more ubiquitous, groundbreaking applications of the Internet of Things (IoT) find their place in many aspects of our society. The exploitation of these devices is the main reason for the cyberattacks in IoT networks. Security design is still an open problem and a crucial step in making IoT applications successful.
View Article and Find Full Text PDFIn this paper, we present a complete change detection system named multimode background subtraction. The universal nature of system allows it to robustly handle multitude of challenges associated with video change detection, such as illumination changes, dynamic background, camera jitter, and moving camera. The system comprises multiple innovative mechanisms in background modeling, model update, pixel classification, and the use of multiple color spaces.
View Article and Find Full Text PDF