The degree of crystallinity in cellulose significantly affects the physical, mechanical, and chemical properties of cellulosic materials, their processing, and their final application. Measuring the crystalline structures of cellulose is a challenging task due to inadequate consistency among the variety of analytical techniques available and the lack of absolute crystalline and amorphous standards. Our article reviews the primary methods for estimating the crystallinity of cellulose, namely, X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Raman and Fourier-transform infrared (FTIR) spectroscopy, sum-frequency generation vibrational spectroscopy (SFG), as well as differential scanning calorimetry (DSC), and evolving biochemical methods using cellulose binding molecules (CBMs).
View Article and Find Full Text PDFThe domestication of forest trees for a more sustainable fiber bioeconomy has long been hindered by the complexity and plasticity of lignin, a biopolymer in wood that is recalcitrant to chemical and enzymatic degradation. Here, we show that multiplex CRISPR editing enables precise woody feedstock design for combinatorial improvement of lignin composition and wood properties. By assessing every possible combination of 69,123 multigenic editing strategies for 21 lignin biosynthesis genes, we deduced seven different genome editing strategies targeting the concurrent alteration of up to six genes and produced 174 edited poplar variants.
View Article and Find Full Text PDFLignocellulosic materials are widely used for food packaging due to their renewable and biodegradable nature. However, their porous and absorptive properties can lead to the uptake and retention of bacteria during food processing, transportation, and storage, which pose a potential risk for outbreaks of foodborne disease. Thus, it is of great importance to understand how bacteria proliferate and survive on lignocellulosic surfaces.
View Article and Find Full Text PDFCellulosic fiber collapse is a phenomenon of fundamental importance for many technologies that include tissue/hygiene to packaging because it governs their essential materials properties such as tensile strength, softness, and water absorption; therefore, we elaborate cellulose fiber collapse from water interactions. This is the first attempt to directly correlate fiber collapse and entrapped or hard-to-remove (HR) water content through DSC, TGA and SEM. Freeze-drying and oven drying were individually investigated for influence on collapse.
View Article and Find Full Text PDFDissolving pulp (DP) is a specialty pulp product from a variety of lignocellulosic biomass (i.e., hardwoods (HW) and softwoods (SW)) with a broad range of applications.
View Article and Find Full Text PDFThe sustainable development of lignocellulose fibers exhibits significant potential to supplant synthetic polymer feedstocks and offers a global platform for generating sustainable packaging, bioplastics, sanitary towels, wipes, and related products. The current research explores the dynamics of fiber production from wood, non-wood, and agro-residues using carbonate hydrolysis and a mild kraft process without bleaching agents. With respect to carbonate hydrolysis, high yield, and good coarseness fibers are attained using a simple, low-cost, and ecofriendly process.
View Article and Find Full Text PDFThis study aims to understand the effect of micro- and nanofibrillated cellulose (MNFC) on the tensile index, softness, and water absorbency of tissue paper. MNFC was produced from four different fiber sources. The results show that MNFC acts as an effective strength enhancer at the expense of a reduced water absorbency and softness.
View Article and Find Full Text PDFEfficient cleavage of aryl-ether linkages is a key strategy for generating aromatic chemicals and fuels from lignin. Currently, a popular method to depolymerize native/technical lignin employs a combination of Lewis acid and hydrogenation metal. However, a clear mechanistic understanding of the process is lacking.
View Article and Find Full Text PDFA deicing agent from renewable resources is necessary to overcome the disadvantages of traditional deicing agents. In this study, biomass autohydrolyzate was evaluated for its applicability as corrosion inhibiting deicing agents. Autohydrolyzates treated with alkali showed significant freezing point depression and corrosion inhibiting effects on mild steel.
View Article and Find Full Text PDFRational spatiotemporal irradiation of cellulose-based hydrogels (carboxymethylcellulose (CMC), citric acid, and riboflavin) using a laser diode stereolithography 3D printer obtained architectures referred to as photodegradation addressable hydrogels (PAHs). Under irradiation, these PAHs engage in an unprecedented spatially resolved zonal swelling illustrating marked but controllable changes in swelling and thickness while concomitantly obtaining improved oxygen transmission rate values by 5 times. XPS, carboxyl content, and swelling data comparisons of hydrogel formulations show that photodegradation and ablation of the material occur, where hydroxyl sites of CMC are converted to aldehydes and ketones.
View Article and Find Full Text PDFLignin is an abundant, renewable, and relatively cheap biobased feedstock that has potential in energy, chemicals, and materials. Kraft lignin, more specifically, has been used for more than 100 years as a self-sustaining energy feedstock for industry after which it has finally reached more widespread commercial appeal. Unfortunately, hardwood kraft lignin (HWKL) has been neglected over these years when compared to softwood kraft lignin (SWKL).
View Article and Find Full Text PDFChanges to the molecular properties of lignin over the course of biorefinery processing were investigated by using sweetgum as a feedstock. Hydrothermal pretreatment has been used because it is an economically attractive, green process. Three representative biorefinery lignin preparations were obtained, with about 70 % yield based on raw lignin.
View Article and Find Full Text PDFMechanical refining results in fiber deconstruction and modifications that enhance enzyme accessibility to carbohydrates. Further understanding of the morphological changes occurring to biomass during mechanical refining and the impacts of these changes on enzymatic digestibility is necessary to maximize yields and reduce energy consumption. Although the degree of fiber length reduction relative to fibrillation/delamination can be impacted by manipulating refining variables, mechanical refining of any type (PFI, disk, and valley beater) typically results in both phenomena.
View Article and Find Full Text PDFThe decarbonization of agriculture faces many challenges and has received a level of attention insufficient to abate the worst effects of climate change and ensure a sustainable bioeconomy. Agricultural emissions are caused both by fossil-intensive fertilizer use and land-use change, which in turn are driven in part by increasing demand for dietary protein. To address this challenge, we present a synergistic system in which organic waste-derived biogas (a mixture of methane and carbon dioxide) is converted to dietary protein and ammonia fertilizer.
View Article and Find Full Text PDFThe production of a high-value xylooligosaccharide (XOS) prebiotic product from lignocellulosic autohydrolysate requires processing for the removal of non-carbohydrate components such as lignin and furfural. In this research, the nature of XOS dissolved in autohydrolysate is evaluated including the XOS degree of polymerization (DP) distribution and potential covalent association between XOS and lignin (LCC). The impact of these factors on the yield of XOS during treatment of autohydrolysate with hydrophobic resin is assessed.
View Article and Find Full Text PDFModified autohydrolysis combined with mechanical refining has been suggested to recover free sugars from sweet sorghum bagasse and facilitates enzyme access to cellulose in bagasse for enhancing its conversion to fermentable sugars. The amount of total available sugars in sweet sorghum bagasse was found to be 76.1% and this value was used to evaluate the efficiency of the process suggested.
View Article and Find Full Text PDFA heightened need to control the spread of infectious diseases prompted the current work in which functionalized and innovative antimicrobial tissue paper was developed with a hydrophobic spray-coating of chitosan (Ch) and cellulose nanocrystals (CNCs) composite. It was hypothesized that the hydrophobic nature of chitosan could be counterbalanced by the addition of CNC to maintain fiber formation and water absorbency. Light-weight tissue handsheets were prepared, spray-coated with Ch, CNC, and their composite coating (ChCNC), and tested for antimicrobial activity against Gram-negative bacteria Escherichia coli and a microbial sample from a human hand after using the rest room.
View Article and Find Full Text PDFThe importance of water pollutants on human health has been the subject of intense study and constitutes perhaps the most significant grand challenge for the future of human society. Water remediation faces many challenges in effectively combating pollution, especially for low income populations where poor water sanitation and little to no access to technically competent and cost effective remediation are nearly insurmountable issues. In an effort to provide low-cost adsorbents, research over the last few years has focused on biological residual materials from plants and animal biomass to not only to add value, but to remediate water at a lower cost with the same or improved efficiency as commercially available option.
View Article and Find Full Text PDFBackground: Mechanical refining is a low-capital and well-established technology used in pulp and paper industry to improve fiber bonding for product strength. Refining can also be applied in a biorefinery context to overcome the recalcitrance of pretreated biomass by opening up the biomass structure and modifying substrate properties (e.g.
View Article and Find Full Text PDFLignin micro- and nanoparticles (LMNPs) synthesized from side-streams of pulp and paper and biorefinery operations have been proposed for the generation of new, high-value materials. As sustainable alternatives to particles of synthetic or mineral origins, LMNPs viability depends on scale-up, manufacturing cost, and applications. By using experimental data as primary source of information, along with industrial know-how, we analyze dry and spherical LMNPs obtained by our recently reported aerosol/atomization method.
View Article and Find Full Text PDFIn this study, a novel modified nickel/H-beta (Ni/DeAl-beta) catalyst, which has active acidic sites and hydrogen binding sites, was prepared and used to produce liquefied fuel from lignin. The bifunctional Ni/DeAl-beta catalyst efficiently converted kraft lignin into liquefied fuel due to the synergistic effect of aluminum Lewis acid sites and nickel hydrogen binding sites. At a nickel content of 0.
View Article and Find Full Text PDFThe objective of the current research was to fabricate and explore the ability of a renewable resource-based paper strength agent to enhance fiber-fiber bonding and introduce antibacterial properties to recycled fiber paper sheets. The agent corn starch, was modified with diethylenetriamine pentaacetic acid (DTPA), complexed with chitosan, and added to recycled furnishes to provide a plethora of hydrogen bonding sites predicated by acid groups, hydroxyls, and amines. The goal was two-fold: (1) to not only increase interfiber bonding, but (2) afford antibacterial character.
View Article and Find Full Text PDFBiomass hydrolysate from autohydrolysis pretreatment was used for furfural production considering it is in rich of xylose, xylo-oligomers, and other decomposition products from hemicellulose structure. By using the vapor-releasing reactor system, furfural was protected from degradation by separating it from the reaction media. The maximum furfural yield of 73% was achieved at 200 °C for biomass hydrolysate without the use of the catalyst.
View Article and Find Full Text PDFFed-batch method has shown a great promise in debottlenecking the high-solid enzymatic hydrolysis for the commercialization of cellulosic biosugar conversion for biofuel/biochemical production. To further improve enzymatic hydrolysis efficiency at high solid loading, fed-batch methods of green liquor-pretreated hardwood were performed to evaluate their effects on sugar recovery by comparing with one-stage batch method in this study. Among all the explored conditions, the fed-batch at 15% consistency gave higher sugar recovery on green liquor-pretreated hardwood compared to that of one-stage batch.
View Article and Find Full Text PDFWith the aim to enhance the direct conversion of raw corn stover into furfural, a promising approach was proposed employing a novel heterogeneous strong acid catalyst (SC-CaC-700) in different solvents. The novel catalyst was characterized by elemental analysis, N adsorption-desorption, FT-IR, XPS, TEM and SEM. The developed catalytic system demonstrated superior efficacy for furfural production from raw corn stover.
View Article and Find Full Text PDF