Publications by authors named "Hasan Baig"

People who engineer biological organisms often find it useful to draw diagrams in order to communicate both the structure of the nucleic acid sequences that they are engineering and the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. SBOL Visual aims to organize and systematize such conventions in order to produce a coherent language for expressing the structure and function of genetic designs.

View Article and Find Full Text PDF
Article Synopsis
  • Engineers in synthetic biology use diagrams to represent nucleic acid sequences and their functional relationships, leading to the emergence of standardized practices.
  • The Synthetic Biology Open Language Visual (SBOL Visual) offers a coherent set of conventions for these diagrams, enhancing communication about genetic designs.
  • Version 2.3 of SBOL Visual introduces novel features, such as depicting complex interactions, overlapping glyphs for nucleic acids, and new glyphs for unspecified interactions and inert DNA spacers, improving upon the previous version 2.2.
View Article and Find Full Text PDF

Experiments with synthetic genetic logic circuits can be time-consuming and expensive. Accordingly, advances in the field of computer-aided design and simulation of genetic circuits have reduced the cost and time required for experimentation. D-VASim is the first genetic circuit simulation tool that allows users to interact with the model during run-time.

View Article and Find Full Text PDF

Synthetic biology builds upon genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. When designing a synthetic system, synthetic biologists need to exchange information about multiple types of molecules, the intended behavior of the system, and actual experimental measurements. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, following an open community process involving both wet bench scientists and dry scientific modelers and software developers, across academia, industry, and other institutions.

View Article and Find Full Text PDF
Article Synopsis
  • Engineers in synthetic biology use diagrams to depict genetic sequences and their functional relationships, helping with organization and communication.
  • The Synthetic Biology Open Language Visual (SBOL Visual) serves as a standard to create a uniform way to represent these genetic designs.
  • Version 2.2 of SBOL Visual enhances the previous version by updating molecular glyphs to align with SBO terms, adding new glyphs for various biological components, and introducing different representations for simple chemicals.
View Article and Find Full Text PDF

Constructing genetic logic circuits is an application of synthetic biology in which parts of the DNA of a living cell are engineered to perform a dedicated Boolean function triggered by an appropriate concentration of certain proteins or by different genetic components. These logic circuits work in a manner similar to electronic logic circuits, but they are much more stochastic and hence much harder to characterize. In this article, we introduce an approach to analyze the threshold value and timing of genetic logic circuits.

View Article and Find Full Text PDF

Unlabelled: Simulation and behavioral analysis of genetic circuits is a standard approach of functional verification prior to their physical implementation. Many software tools have been developed to perform in silico analysis for this purpose, but none of them allow users to interact with the model during runtime. The runtime interaction gives the user a feeling of being in the lab performing a real world experiment.

View Article and Find Full Text PDF

A surfactant-free solution methodology, simply using water as a solvent, has been developed for the straightforward synthesis of single-phase orthorhombic SnSe nanoplates in gram quantities. Individual nanoplates are composed of {100} surfaces with {011} edge facets. Hot-pressed nanostructured compacts (Eg ≈0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: