Glioblastoma (GBM) remains an incurable disease, requiring more effective therapies. Through interrogation of publicly available CRISPR and RNAi library screens, we identified the α-ketoglutarate dehydrogenase (OGDH) gene, which encodes an enzyme that is part of the tricarboxylic acid (TCA) cycle, as essential for GBM growth. Moreover, by combining transcriptome and metabolite screening analyses, we discovered that loss of function of OGDH by the clinically validated drug compound CPI-613 was synthetically lethal with Bcl-xL inhibition (genetically and through the clinically validated BH3 mimetic, ABT263) in patient-derived xenografts as well neurosphere GBM cultures.
View Article and Find Full Text PDFBackground: Adult Polyglucosan Body Disease (APBD) is an ultra-rare, genetic neurodegenerative disorder caused by autosomal recessive mutations in the glycogen branching enzyme gene. Knowledge of the demographic and clinical characteristics of APBD patients and the natural history of the disease is lacking. We report here initial results from a patient-reported registry of APBD patients.
View Article and Find Full Text PDFPurpose: Novel therapeutic targets are critical to unravel for the most common primary brain tumor in adults, glioblastoma (GBM). We have identified a novel synthetic lethal interaction between ClpP activation and HDAC1/2 inhibition that converges on GBM energy metabolism.
Experimental Design: Transcriptome, metabolite, and U-13C-glucose tracing analyses were utilized in patient-derived xenograft (PDX) models of GBM.
Adult polyglucosan body disease (APBD) is a rare but probably underdiagnosed autosomal recessive neurodegenerative disorder due to pathogenic variants in GBE1. The phenotype is characterized by neurogenic bladder dysfunction, spastic paraplegia, and axonal neuropathy. Additionally, cognitive symptoms and dementia have been reported in APBD but have not been studied systematically.
View Article and Find Full Text PDFThis work employs adult polyglucosan body disease (APBD) models to explore the efficacy and mechanism of action of the polyglucosan-reducing compound 144DG11. APBD is a glycogen storage disorder (GSD) caused by glycogen branching enzyme (GBE) deficiency causing accumulation of poorly branched glycogen inclusions called polyglucosans. 144DG11 improved survival and motor parameters in a GBE knockin (Gbe ) APBD mouse model.
View Article and Find Full Text PDFAurora kinase A (AURKA) has emerged as a drug target for glioblastoma (GBM). However, resistance to therapy remains a critical issue. By integration of transcriptome, chromatin immunoprecipitation sequencing (CHIP-seq), Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), proteomic and metabolite screening followed by carbon tracing and extracellular flux analyses we show that genetic and pharmacological AURKA inhibition elicits metabolic reprogramming mediated by inhibition of MYC targets and concomitant activation of Peroxisome Proliferator Activated Receptor Alpha (PPARA) signaling.
View Article and Find Full Text PDFObjective: Autosomal recessive human thymidine kinase 2 (TK2) mutations cause TK2 deficiency, which typically manifests as a progressive and fatal mitochondrial myopathy in infants and children. Treatment with pyrimidine deoxynucleosides deoxycytidine and thymidine ameliorates mitochondrial defects and extends the lifespan of Tk2 knock-in mouse (Tk2 ) and compassionate use deoxynucleoside therapy in TK2 deficient patients have shown promising indications of efficacy. To augment therapy for Tk2 deficiency, we assessed gene therapy alone and in combination with deoxynucleoside therapy in Tk2 mice.
View Article and Find Full Text PDFAdult polyglucosan body disease (APBD) represents a complex autosomal recessive inherited neurometabolic disorder due to homozygous or compound heterozygous pathogenic variants in GBE1 gene, resulting in deficiency of glycogen-branching enzyme and secondary storage of glycogen in the form of polyglucosan bodies, involving the skeletal muscle, diaphragm, peripheral nerve (including autonomic fibers), brain white matter, spinal cord, nerve roots, cerebellum, brainstem and to a lesser extent heart, lung, kidney, and liver cells. The diversity of new clinical presentations regarding neuromuscular involvement is astonishing and transformed APBD in a key differential diagnosis of completely different clinical conditions, including axonal and demyelinating sensorimotor polyneuropathy, progressive spastic paraparesis, motor neuronopathy presentations, autonomic disturbances, leukodystrophies or even pure myopathic involvement with limb-girdle pattern of weakness. This review article aims to summarize the main clinical, biochemical, genetic, and diagnostic aspects regarding APBD with special focus on neuromuscular presentations.
View Article and Find Full Text PDFBackground: TK2 is a nuclear gene encoding the mitochondrial matrix protein thymidine kinase 2 (TK2), a critical enzyme in the mitochondrial nucleotide salvage pathway. Deficiency of TK2 activity causes mitochondrial DNA (mtDNA) depletion, which in humans manifests predominantly as a mitochondrial myopathy with onset typically in infancy and childhood. We previously showed that oral treatment of the Tk2 H126N knock-in mouse model (Tk2) with the TK2 substrates, deoxycytidine (dCtd) and thymidine (dThd), delayed disease onset and prolonged median survival by 3-fold.
View Article and Find Full Text PDFLeigh syndrome is a frequent, heterogeneous pediatric presentation of mitochondrial oxidative phosphorylation (OXPHOS) disease, manifesting with psychomotor retardation and necrotizing lesions in brain deep gray matter. OXPHOS occurs at the inner mitochondrial membrane through the integrated activity of five protein complexes, of which complex V (CV) functions in a dimeric form to directly generate adenosine triphosphate (ATP). Mutations in several different structural CV subunits cause Leigh syndrome; however, dimerization defects have not been associated with human disease.
View Article and Find Full Text PDFIntroduction: Adult polyglucosan body disease (APBD) usually presents with progressive spastic paraparesis, neurogenic bladder, and distal lower limb sensory abnormalities. It is caused by mutations in the glycogen branching enzyme gene (GBE1).
Methods: We describe a woman with an unusual phenotype manifesting as progressive left brachial more than lumbosacral plexopathies, with central sensory and corticospinal tract involvement.
Introduction: The PNPLA2 gene encodes the enzyme adipose triglyceride lipase (ATGL), which catalyzes the first step of triglyceride hydrolysis. Mutations in this gene are associated with an autosomal recessive lipid-storage myopathy, neutral lipid-storage disease with myopathy (NLSD-M).
Results: A 72-year-old woman had late-onset myopathy, with mild weakness, cramps, and exercise intolerance.
A member of the four-and-a-half-LIM (FHL) domain protein family, FHL1, is highly expressed in human adult skeletal and cardiac muscle. Mutations in FHL1 have been associated with diverse X-linked muscle diseases: scapuloperoneal (SP) myopathy, reducing body myopathy, X-linked myopathy with postural muscle atrophy, rigid spine syndrome (RSS) and Emery-Dreifuss muscular dystrophy. In 2008, we identified a missense mutation in the second LIM domain of FHL1 (c.
View Article and Find Full Text PDFAutosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2(-/-)) knock-in mouse model from postnatal day 4, when mutant mice are phenotypically normal, but biochemically affected. Assessment of 13-day-old Tk2(-/-) mice treated with dCMP+dTMP 200 mg/kg/day each (Tk2(-/-200dCMP/) (dTMP)) demonstrated that in mutant animals, the compounds raise dTTP concentrations, increase levels of mtDNA, ameliorate defects of mitochondrial respiratory chain enzymes, and significantly prolong their lifespan (34 days with treatment versus 13 days untreated).
View Article and Find Full Text PDFWe report an unusual case of Leigh syndrome due to the m.10191T>C mutation in the complex I gene MT-ND3. This mutation has been associated with a spectrum of clinical phenotypes ranging from infant lethality to adult onset.
View Article and Find Full Text PDFImportance: The neuromuscular presentation of glycogen branching enzyme deficiency includes a severe infantile form and a late-onset variant known as adult polyglucosan body disease. Herein, we describe 2 patients with adult acute onset of fluctuating neurological signs and brain magnetic resonance imaging lesions simulating multiple sclerosis. A better definition of this new clinical entity is needed to facilitate diagnosis.
View Article and Find Full Text PDFGlycogen storage diseases are important causes of myopathy and cardiomyopathy. We describe 10 patients from 8 families with childhood or juvenile onset of myopathy, 8 of whom also had rapidly progressive cardiomyopathy, requiring heart transplant in 4. The patients were homozygous or compound heterozygous for missense or truncating mutations in RBCK1, which encodes for a ubiquitin ligase, and had extensive polyglucosan accumulation in skeletal muscle and in the heart in cases of cardiomyopathy.
View Article and Find Full Text PDFUncontrolled elongation of glycogen chains, not adequately balanced by their branching, leads to the formation of an insoluble, presumably neurotoxic, form of glycogen called polyglucosan. To test the suspected pathogenicity of polyglucosans in neurological glycogenoses, we have modeled the typical glycogenosis Adult Polyglucosan Body Disease (APBD) by suppressing glycogen branching enzyme 1 (GBE1, EC 2.4.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) consists of a group of complex developmental disabilities characterized by impaired social interactions, deficits in communication and repetitive behavior. Multiple lines of evidence implicate mitochondrial dysfunction in ASD. In postmortem BA21 temporal cortex, a region that exhibits synaptic pathology in ASD, we found that compared to controls, ASD patients exhibited altered protein levels of mitochondria respiratory chain protein complexes, decreased Complex I and IV activities, decreased mitochondrial antioxidant enzyme SOD2, and greater oxidative DNA damage.
View Article and Find Full Text PDFAdult polyglucosan body disease (APBD) is a metabolic disorder usually caused by glycogen branching enzyme (GBE) deficiency. APBD associates progressive walking difficulties, bladder dysfunction and, in about 50% of the cases, cognitive decline. APBD is characterized by a recognizable leukodystrophy on brain MRI.
View Article and Find Full Text PDFObjective: Adult polyglucosan body disease (APBD) is an autosomal recessive leukodystrophy characterized by neurogenic bladder, progressive spastic gait, and peripheral neuropathy. Polyglucosan bodies accumulate in the central and peripheral nervous systems and are often associated with glycogen branching enzyme (GBE) deficiency. To improve clinical diagnosis and enable future evaluation of therapeutic strategies, we conducted a multinational study of the natural history and imaging features of APBD.
View Article and Find Full Text PDFDefects of mitochondrial protein synthesis are clinically and genetically heterogeneous. We previously described a male infant who was born to consanguineous parents and who presented with severe congenital encephalopathy, peripheral neuropathy, myopathy, and lactic acidosis associated with deficiencies of multiple mitochondrial respiratory-chain enzymes and defective mitochondrial translation. In this work, we have characterized four additional affected family members, performed homozygosity mapping, and identified a homozygous splicing mutation in the splice donor site of exon 2 (c.
View Article and Find Full Text PDF