High-frequency transmission is limited to the skin depth in metals. Because poor conductivity cannot be compensated for by increasing the conductor thickness as with DC, optimal transport properties are prerequisites for radio frequency (RF) use. Structural and chemical analyses of transmission lines printed using a traditional ink consisting of Ag nanoflakes in a dispersing phase revealed that optimized thermal treatments yielded thorough burnout of the binder, significant grain growth, elimination of the pore volume, and electrical responses that were comparable to values obtained for thermally evaporated, fully dense Ag controls.
View Article and Find Full Text PDFNanostructured metal materials are the frontrunners of numerous electronic advancements. While realizing such potential, it is indispensable to address their oxidation and stability drawbacks, which are due to their high surface energies. Here, we report printable and air-stable molecular metal ink materials from metal-organic decomposition by using copper ions, including both copper formate and aqueous copper-amine complexes.
View Article and Find Full Text PDF