Spectrochim Acta A Mol Biomol Spectrosc
December 2021
The pyriform silk of the attachment disc of a spider was studied using infrared-visible vibrational sum frequency generation (SFG) spectroscopy. The spider can attach dragline and radial lines to many kinds of substrates in nature (concrete, alloy, metal, glass, plant branches, leaves, etc.) with the attachment disc.
View Article and Find Full Text PDFManipulation of carrier densities at the single electron level is inevitable in modern silicon based transistors to ensure reliable circuit operation with sufficiently low threshold-voltage variations. However, previous methods required statistical analysis to identify devices which exhibit random telegraph signals (RTSs), caused by trapping and de-trapping of a single electron. Here, we show that we can deliberately introduce an RTS in a silicon nanowire transistor, with its probability distribution perfectly controlled by a triple gate.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
February 2017
We have detected a second-order nonlinear optical response from aggregates of the ampholytic megamolecular polysaccharide sacran extracted from cyanobacterial biomaterials by using optical second-harmonic-generation (SHG) microscopy. The SHG images of sacran cotton-like lump, fibers, and cast films showed SHG intensity microspots of several tens of micrometers in size. The dependence of the SHG spot intensity on an excitation light polarization angle was observed to illustrate sacran molecular orientation in these microdomains.
View Article and Find Full Text PDFIntroduction: We investigated the effect of progressive haemodilution on the dynamics of fibrin clot formation and clot microstructure using a novel rheological method. The technique measures clotting time (TGP), clot strength (G`GP), and quantifies clot microstructure (df) at the incipient stages of fibrin formation. We use computational modelling to examine the relationship between structure and mass, as well as helium ion microscopy (HIM) to compare morphological changes in the fully formed clot to that of the incipient clot.
View Article and Find Full Text PDFOptical fibers are an excellent transmission medium for light and underpin the infrastructure of the Internet, but generally after fabrication their optical properties cannot be easily modified. Here, we explore the concept of nanomechanical optical fibers where, in addition to the fiber transmission capability, the internal core structure of the fiber can also be controlled through sub-micron mechanical movements. The nanomechanical functionality of such fibers is demonstrated in the form of dual core optical fibers, in which the cores are independently suspended within the fiber.
View Article and Find Full Text PDFIn this report, helium ion microscopy (HIM) is used to study the micro and nanostructures responsible for structural color in the wings of two species of Lepidotera from the Papilionidae family: Papilio ulysses (Blue Mountain Butterfly) and Parides sesostris (Emerald-patched Cattleheart). Electronic charging of uncoated scales from the wings of these butterflies, due to the incident ion beam, is successfully neutralized, leading to images displaying a large depth-of-field and a high level of surface detail, which would normally be obscured by traditional coating methods used for scanning electron microscopy (SEM). The images are compared with those from variable pressure SEM, demonstrating the superiority of HIM at high magnifications.
View Article and Find Full Text PDFWe report the fabrication of a large mode area tellurite holey fiber from an extruded preform, with a mode area of 3000microm(2). Robust single-mode guidance at 1.55microm was confirmed by both optical measurement and numerical simulation.
View Article and Find Full Text PDFSeveral designs of infrared sensors use a Fabry-Perot interferometer (FPI) to modulate the incident light. In this work we analyze the particular case where the FPI fringes are matched with very well defined rovibrational absorption lines of a target molecule such as CO(2), CO, N(2)O, or CH(4). In this kind of sensor, modulation is induced by scanning the FPI cavity length over one half of the reference wavelength.
View Article and Find Full Text PDF