Unlabelled: Megakaryocytes (MKs) are large, polyploid cells that contribute to bone marrow homeostasis through the secretion of cytokines such as transforming growth factor β1 (TGFβ1). During neoplastic transformation, immature MKs accumulate in the bone marrow where they induce fibrotic remodeling ultimately resulting in myelofibrosis. Current treatment strategies aim to prevent MK hyperproliferation, however, little is understood about the potential of targeting dysregulated cytokine secretion from neoplastic MKs as a novel therapeutic avenue.
View Article and Find Full Text PDFPurpose Of Review: Despite being discovered decades ago, metastasis remains a formidable challenge in cancer treatment. During the intermediate phase of metastasis, tumor cells detach from primary tumor or metastatic sites and travel through the bloodstream and lymphatic system to distant tissues. These tumor cells in the circulation are known as circulating tumor cells (CTCs), and a higher number of CTCs has been linked to poor prognoses in various cancers.
View Article and Find Full Text PDFJACC Basic Transl Sci
September 2024
Arterioscler Thromb Vasc Biol
September 2024
Background: In addition to their fundamental roles in preserving vascular integrity, platelets also contribute to tumor angiogenesis and metastasis. However, despite being a reservoir for angiogenic and metastatic cytokines, platelets also harbor negative regulators of tumor progression. Angpt1 (angiopoietin-1) is a cytokine essential for developmental angiogenesis that also protects against tumor cell metastasis through an undefined mechanism.
View Article and Find Full Text PDFPlatelet-producing megakaryocytes (MKs) primarily reside in the bone marrow, where they duplicate their DNA content with each cell cycle resulting in polyploid cells with an intricate demarcation membrane system. While key elements of the cytoskeletal reorganizations during proplatelet formation have been identified, what initiates the release of platelets into vessel sinusoids remains largely elusive. Using a cell cycle indicator, we observed a unique phenomenon, during which amplified centrosomes in MKs underwent clustering following mitosis, closely followed by proplatelet formation, which exclusively occurred in G of interphase.
View Article and Find Full Text PDFSemin Thromb Hemost
April 2024
Alongside their conventional roles in thrombosis and hemostasis, platelets have long been associated with nonhemostatic pathologies, including tumor cell metastasis. Numerous mechanistic studies have since demonstrated that the direct binding of platelets to intravascular tumor cells promotes key hallmarks of metastasis, including survival in circulation and tumor cell arrest at secondary sites. However, platelets also interact with nonmalignant cells that make up the stromal and immune compartments within both primary and metastatic tumors.
View Article and Find Full Text PDFDespite abundant research demonstrating that platelets can promote tumor cell metastasis, whether primary tumors affect platelet-producing megakaryocytes remains understudied. In this study, we used a spontaneous murine model of breast cancer to show that tumor burden reduced megakaryocyte number and size and disrupted polyploidization. Single-cell RNA sequencing demonstrated that megakaryocytes from tumor-bearing mice exhibit a pro-inflammatory phenotype, epitomized by increased , , , and transcripts.
View Article and Find Full Text PDFThe formation of new blood and lymphatic vessels is essential for both the development of multicellular organisms and (patho)physiological processes like wound repair and tumor growth. In the 1990s, circulating blood platelets were first postulated to regulate tumor angiogenesis by interacting with the endothelium and releasing angiogenic regulators from specialized α granules. Since then, many studies have validated the contributions of platelets to tumor angiogenesis, while uncovering novel roles for platelets in other angiogenic processes like wound resolution and retinal vascular disease.
View Article and Find Full Text PDFProgrammed death ligand 1 (PD-L1) is an immune checkpoint protein that suppresses cytotoxic T lymphocytes and is often overexpressed in cancers. Due to favorable clinical trial results, immune checkpoint inhibition (ICI) is part of Food and Drug Administration approved immuno-oncology therapies; however, not all patients benefit from ICI therapy. High blood platelet-to-lymphocyte ratio has been associated with failure of ICI treatment, but whether platelets have a role in hindering ICI response is unclear.
View Article and Find Full Text PDFPlatelets have long been known to play important roles beyond hemostasis and thrombosis. Now recognized as a bona fide mediator of malignant disease, platelets influence various aspects of cancer progression, most notably tumor cell metastasis. Interestingly, platelets isolated from cancer patients often display distinct RNA and protein profiles, with no clear alterations in hemostatic activity.
View Article and Find Full Text PDFPolyphenols, natural products present in plant-based foods, play a protective role against several complex diseases through their antioxidant activity and by diverse molecular mechanisms. Here we develop a network medicine framework to uncover mechanisms for the effects of polyphenols on health by considering the molecular interactions between polyphenol protein targets and proteins associated with diseases. We find that the protein targets of polyphenols cluster in specific neighbourhoods of the human interactome, whose network proximity to disease proteins is predictive of the molecule's known therapeutic effects.
View Article and Find Full Text PDFAntisense oligonucleotides (ASO) are DNA-based, disease-modifying drugs. Clinical trials with 2'-O-methoxyethyl (2'MOE) ASO have shown dose- and sequence-specific lowering of platelet counts according to two phenotypes. Phenotype 1 is a moderate (but not clinically severe) drop in platelet count.
View Article and Find Full Text PDFIt is now recognized that compounds released from tumor cells can activate platelets, causing the release of platelet-derived factors into the tumor microenvironment. Several of these factors have been shown to directly promote neovascularization and metastasis, yet how the feedback between platelet releasate and the tumor cell affects metastatic phenotype remains largely unstudied. Here, we identify that breast tumor cells secrete high levels of interleukin 8 (IL-8, CXCL8) in response to platelet releasate, which promotes their invasive capacity.
View Article and Find Full Text PDFCitalopram, a selective serotonin reuptake inhibitor (SSRI), inhibits platelet function in vitro. We have previously shown that this action is independent of citalopram's ability to block serotonin uptake by the serotonin transporter and must therefore be mediated via distinct pharmacological mechanisms. We now report evidence for two novel and putative mechanisms of citalopram-induced platelet inhibition.
View Article and Find Full Text PDFPurpose Of Review: Platelets are small, anucleate cells that circulate within the blood and play essential roles in preserving vascular integrity. However, abnormalities in either platelet production or destruction can result in thrombocytopenia, clinically defined by a platelet count lower than 150 000/μL of whole blood. Thrombocytopenia is frequently associated with impaired hemostatic responses to vascular injury and can be life-threatening because of bleeding complications.
View Article and Find Full Text PDFCitalopram prevents serotonin (5-HT) uptake into platelets by blocking the serotonin reuptake transporter (SERT). Although some clinical data suggest that selective serotonin reuptake inhibitors (SSRIs) may affect haemostasis and thrombosis, these poorly-characterised effects are not well understood mechanistically and useful in vitro data is limited. We sought to determine whether the inhibitory effects of citalopram on platelets are mediated via its pharmacological inhibition of 5-HT transport.
View Article and Find Full Text PDFBackground And Purpose: The discovery that flavonoids are capable of inhibiting platelet function has led to their investigation as potential antithrombotic agents. However, despite the range of studies on the antiplatelet properties of flavonoids, little is known about the mechanisms by which flavonoids inhibit platelet function. In this study, we aimed to explore the pharmacological effects of a polymethoxy flavonoid, nobiletin, in the modulation of platelet function.
View Article and Find Full Text PDF