Publications by authors named "Harvey J M Hou"

Photosynthesis nourishes nearly all life on Earth. Therefore, a deeper understanding of the processes by which sunlight is converted into stored chemical energy presents an important and continuing challenge for fundamental scientific research. This Special Issue is dedicated to academician Vladimir A.

View Article and Find Full Text PDF

Identification and manipulation of cellular energy regulation mechanisms may be a strategy to increase productivity in photosynthetic organisms. This work tests the hypothesis that polyphosphate synthesis and degradation play a role in energy management by storing or dissipating energy in the form of ATP. A polyphosphate kinase () knock-out strain unable to synthesize polyphosphate was generated in the cyanobacterium sp.

View Article and Find Full Text PDF

Photosynthesis, as one of the most important chemical reactions, has powered our planet for over four billion years on a massive scale. This review summarizes and highlights the major contributions of Govindjee from fundamentals to applications in photosynthesis. His research included primary photochemistry measurements, in the picosecond time scale, in both Photosystem I and II and electron transport leading to NADP reduction, using two light reactions.

View Article and Find Full Text PDF

The heliobacteria are a family of strictly anaerobic, Gram-positive, photoheterotrophs in the Firmicutes. They make use of a homodimeric type I reaction center (RC) that contains ∼20 antenna bacteriochlorophyll (BChl) g molecules, a special pair of BChl g' molecules (P800), two 8(1)-OH-Chl aF molecules (A0), a [4Fe-4S] iron-sulfur cluster (FX), and a carotenoid (4,4'-diaponeurosporene). It is known that in the presence of light and oxygen BChl g is converted to a species with an absorption spectrum identical to that of Chl a.

View Article and Find Full Text PDF

We have previously investigated the response mechanisms of photosystem II complexes from spinach to strong UV and visible irradiations (Wei et al J Photochem Photobiol B 104:118-125, 2011). In this work, we extend our study to the effects of strong light on the unusual cyanobacterium Acaryochloris marina, which is able to use chlorophyll d (Chl d) to harvest solar energy at a longer wavelength (740 nm). We found that ultraviolet (UV) or high level of visible and near-far red light is harmful to A.

View Article and Find Full Text PDF

The phycobilisomes of cyanobacteria and red-algae are highly efficient peripheral light-harvesting complexes that capture and transfer light energy in a cascade of excitation energy transfer steps through multiple phycobilin chromophores to the chlorophylls of core photosystems. In this work, we focus on the last step of this process by constructing simple functional analogs of natural phycobilisome-photosystem complexes that are based on bichromophoric protein complexes comprising a phycobilin- and a chlorophyll- or porphyrin-binding domain. The former is based on ApcE(1-240), the N-terminal chromophore-binding domain of the phycobilisome's L(CM) core-membrane linker, and the latter on HP7, a de novo designed four-helix bundle protein that was originally planned as a high-affinity heme-binding protein, analogous to b-type cytochromes.

View Article and Find Full Text PDF

In nature, the water-splitting reaction via photosynthesis driven by sunlight in plants, algae, and cyanobacteria stores the vast solar energy and provides vital oxygen to life on earth. The recent advances in elucidating the structures and functions of natural photosynthesis has provided firm framework and solid foundation in applying the knowledge to transform the carbon-based energy to renewable solar energy into our energy systems. In this review, inspired by photosynthesis robust photo water-splitting systems using manganese-containing materials including Mn-terpy dimer/titanium oxide, Mn-oxo tetramer/Nafion, and Mn-terpy oligomer/tungsten oxide, in solar fuel production are summarized and evaluated.

View Article and Find Full Text PDF

Photosystem II, located in the thylakoid membranes of green plants, algae, and cyanobacteria, uses sunlight to split water into protons, electrons, and a dioxygen molecule. The mechanism of its electron transfers and oxygen evolution including the structure of the protein and rates of the S-state cycle has been extensively investigated. Substantial progress has been made; however, the thermodynamics of PS II electron transfer and of the oxygen cycle are poorly understood.

View Article and Find Full Text PDF

The Mn cluster in photosystem II (PS II) is believed to play an important role in the UV photoinhibition of green plants, but the mechanism is still not clear at a molecular level. In this work, the photochemical stability of [Mn(III)(O)(2)Mn(IV)(H(2)O)(2)(Terpy)(2)](NO(3))(3) (Terpy=2,2':6',2''-terpyridine), designated as Mn-oxo mixed-valence dimer, a well characterized functional model of the oxygen-evolving complex in PS II, was examined in aqueous solution by exposing the complex to excess light irradiation at six different wavelengths in the range of 250 to 700 nm. The photodamage of the Mn-oxo mixed-valence dimer was confirmed by the decrease of its oxygen-evolution activity measured in the presence of the chemical oxidant oxone.

View Article and Find Full Text PDF

To address the issues of energy crisis and global warming, novel renewable carbon-free or carbon-neutral energy sources must be identified and developed. A deeper understanding of photosynthesis is the key to provide a solid foundation to facilitate this transformation. To mimic the water oxidation of photosystem II oxygen evolving complex, Mn-oxo complexes and Co-phosphate catalytic material were discovered in solar energy storage.

View Article and Find Full Text PDF

We review recent advances in the methodology of pulsed time-resolved photoacoustics and its application to studies of photosynthetic reaction centers and membrane receptors such as the G protein-coupled receptor rhodopsin. The experimental parameters accessible to photoacoustics include molecular volume change and photoreaction enthalpy change. Light-driven volume change secondary to protein conformational changes or electrostriction is directly related to the photoreaction and thus can be a useful measurement of activity and function.

View Article and Find Full Text PDF

When the biosynthesis of phylloquinone is inhibited in Synechocystis sp. PCC 6803 by interrupting the menA or the menB gene, photosystem I (PS I) recruits plastoquinone-9 (A(P)) to occupy the A(1) sites. In PS I from the menA and menB null mutants, forward electron transfer from the quinone to the FeS clusters occurs approximately 1000 times slower than in wild-type PS I [Semenov, A.

View Article and Find Full Text PDF

We have previously reported the enthalpy and volume changes of charge separation in photosystem I from Synechocystis 6803 using pulsed photoacoustics on the microsecond time scale, assigned to the electron-transfer reaction from excited-state P(700) to F(A/B) iron sulfur clusters. In the present work, we focus on the thermodynamics of two steps in photosystem I: (1) P(700) --> A(1)(-)F(X) (<10 ns) and (2) A(1)(-)F(X) --> F(A/B)(-) (20-200 ns). The fit by convolution of photoacoustic waves on the nanosecond and microsecond time scales resolved two kinetic components: (1) a prompt component (<10 ns) with large negative enthalpy (-0.

View Article and Find Full Text PDF