Publications by authors named "Harvey D Bradshaw"

Premise Of The Study: Pollinator-mediated selection on flower phenotypes (e.g., shape, color, scent) is key to understanding the adaptive radiation of angiosperms, many of which have evolved specialized relationships with a particular guild of animal pollinators (e.

View Article and Find Full Text PDF

A third of all angiosperm species produce flowers with petals fused into a corolla tube. The various elaborations of corolla tube attributes, such as length, width and curvature, have enabled plants to exploit many specialized pollinator groups. These elaborations often differ dramatically among closely related species, contributing to pollinator shift and pollinator-mediated reproductive isolation and speciation.

View Article and Find Full Text PDF

Flower color patterns have long served as a model for developmental genetics because pigment phenotypes are visually striking, yet generally not required for plant viability, facilitating the genetic analysis of color and pattern mutants. The evolution of novel flower colors and patterns has played a key role in the adaptive radiation of flowering plants via their specialized interactions with different pollinator guilds (e.g.

View Article and Find Full Text PDF

Pollinator-mediated reproductive isolation is a major factor in driving the diversification of flowering plants. Studies of floral traits involved in reproductive isolation have focused nearly exclusively on visual signals, such as flower color. The role of less obvious signals, such as floral scent, has been studied only recently.

View Article and Find Full Text PDF

A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation. Through transcriptome profiling, mutant analyses and transgenic experiments, we aim to establish a 'baseline' floral anthocyanin regulation model in Mimulus lewisii and to examine the different ways of tinkering with this model in generating the diversity of floral anthocyanin patterns in other Mimulus species. We find one WD40 and one bHLH gene controlling anthocyanin pigmentation in the entire corolla of M.

View Article and Find Full Text PDF

Prezygotic barriers play a major role in the evolution of reproductive isolation, which is a prerequisite for speciation. However, despite considerable progress in identifying genes and mutations responsible for postzygotic isolation, little is known about the genetic and molecular basis underlying prezygotic barriers. The bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated M.

View Article and Find Full Text PDF