Publications by authors named "Haruyuki Makio"

Multinuclear alkylene zinc (MAZ) compounds of the type EtZn-(R″-Zn)n-Et (R″ = ethyl and propyl branched alkylene groups) were synthesized by a simple one-step procedure in nonpolar hydrocarbon solvents from α,ω-dienes (e.g., 1,7-octadiene or 1,9-decadiene) and diethylzinc using a bis(salicylaldiminato)Zr(IV) complex, [(2-methylcyclohexyl)N═CH(2-O-C6H3-3,5-di-tert-butyl)]2ZrMe2, as a catalyst.

View Article and Find Full Text PDF

Bis(phenoxy-imine) Zr and Hf complexes were activated with (i)Bu3Al or (i)Bu2AlH in conjunction with Ph3CB(C6F5)4 and tested as catalysts for propylene polymerization with emphasis on the enantioselectivity of the isospecific species and the single site polymerization characteristics. The isoselective species was identified as the in situ generated bis(phenoxy-amine) complex whose isoselectivity was sensitive to subtle changes in ligand structure. By employing specific substituents at certain key positions the isotacticity reached an extremely high level comparable to high-end commercial isotactic polypropylenes (Tm > 160 °C).

View Article and Find Full Text PDF

Catalysts contribute to the efficient production of chemicals and materials in almost all processes in the chemical industry. The polyolefin industry is one prominent example of the importance of catalysts. The discovery of Ziegler-Natta catalysts in the 1950s resulted in the production of high-density polyethylenes (PEs) and isotactic polypropylenes (iPPs).

View Article and Find Full Text PDF

Bis(pyrrolide-imine) Ti complexes in conjunction with methylalumoxane (MAO) were found to work as efficient catalysts for the copolymerization of ethylene and norbornene to afford unique copolymers via an addition-type polymerization mechanism. The catalysts exhibited very high norbornene incorporation, superior to that obtained with Me(2)Si(Me(4)Cp)(N-tert-Bu)TiCl(2) (CGC). The sterically open and highly electrophilic nature of the catalysts is probably responsible for the excellent norbornene incorporation.

View Article and Find Full Text PDF

This contribution reports the discovery and application of phenoxy-imine-based catalysts for olefin polymerization. Ligand-oriented catalyst design research has led to the discovery of remarkably active ethylene polymerization catalysts (FI Catalysts), which are based on electronically flexible phenoxy-imine chelate ligands combined with early transition metals. Upon activation with appropriate cocatalysts, FI Catalysts can exhibit unique polymerization catalysis (e.

View Article and Find Full Text PDF