Publications by authors named "Haruto Kurata"

ONO-4641, 1-({6-[(2-methoxy-4-propylbenzyl)oxy]-1-methyl-3,4-dihydronaphthalen-2-yl}methyl)azetidine-3-carboxylic acid (ceralifimod), is a second-generation sphingosine 1-phosphate receptor agonist selective for sphingosine 1-phosphate receptors 1 and 5, and has clinical effects in multiple sclerosis. The objective of the present study was to explore other potential indications for ONO-4641 based on its immunomodulatory effects. ONO-4641 was tested in non-obese diabetic (NOD) mice, an animal model of spontaneous type 1 diabetes mellitus, an autoimmune disease with unmet medical needs.

View Article and Find Full Text PDF

This letter describes a focused, multi-dimensional optimization campaign around BL-1249, a fenamate class non-steroidal anti-inflammatory and a known activator of the K potassium channels TREK-1 (K2.1) and TREK-2 (K10.1).

View Article and Find Full Text PDF

The inward rectifier potassium (Kir) channel Kir4.1 () carries out important physiologic roles in epithelial cells of the kidney, astrocytes in the central nervous system, and stria vascularis of the inner ear. Loss-of-function mutations in lead to EAST/SeSAME syndrome, which is characterized by epilepsy, ataxia, renal salt wasting, and sensorineural deafness.

View Article and Find Full Text PDF

The discovery of 1-({6-[(2-methoxy-4-propylbenzyl)oxy]-1-methyl-3,4-dihydronaphthalen-2-yl}methyl)azetidine-3-carboxylic acid 13n (ceralifimod, ONO-4641), a sphingosine-1-phosphate (S1P) receptor agonist selective for S1P and S1P, is described. While it has been revealed that the modulation of the S1P receptor is an effective way to treat autoimmune diseases such as relapsing-remitting multiple sclerosis (RRMS), it was also reported that activation of the S1P receptor is implicated in some undesirable effects. We carried out a structure-activity relationship (SAR) study of hit compound 6 with an amino acid moiety in the hydrophilic head region.

View Article and Find Full Text PDF

The inward rectifier potassium (Kir) channel Kir7.1 (KCNJ13) has recently emerged as a key regulator of melanocortin signaling in the brain, electrolyte homeostasis in the eye, and uterine muscle contractility during pregnancy. The pharmacological tools available for exploring the physiology and therapeutic potential of Kir7.

View Article and Find Full Text PDF

The structure of the S1P2 antagonist 1 has been modified with the aim of improving its oral bioavailability. The chemical modification of the alkyl chain and carboxylic acid moieties of 1 led to significant improvements in the oral exposure of compounds belonging to this series. The optimization of the ring size of the urea portion of these molecules also led to remarkable improvements in the oral exposure.

View Article and Find Full Text PDF

Our initial lead compound 2 was modified to improve its metabolic stability. The resulting compound 5 showed excellent metabolic stability in rat and human liver microsomes. We subsequently designed and synthesized a hybrid compound of 5 and the 1,3-bis(aryloxy) benzene derivative 1, which was previously reported by our group to be an S1P2 antagonist.

View Article and Find Full Text PDF

Lipid biology continues to emerge as an area of significant therapeutic interest, particularly as the result of an enhanced understanding of the wealth of signaling molecules with diverse physiological properties. This growth in knowledge is epitomized by lysophosphatidic acid (LPA), which functions through interactions with at least six cognate G protein-coupled receptors. Herein, we present three crystal structures of LPA1 in complex with antagonist tool compounds selected and designed through structural and stability analyses.

View Article and Find Full Text PDF

The structure-activity relationships of a novel series of sphingosine-1-phosphate receptor antagonists have been examined in detail. The initial hit compound 1 was modified through synthesis to improve its S1P2 activity. The synthesis of a series of analogs revealed that 1,3-bis(aryloxy)benzene derivatives, as represented by 22, are potent and selective S1P2 antagonists.

View Article and Find Full Text PDF

This Letter describes the continued optimization of the MLPCN probe ML375, a highly selective M5 negative allosteric modulator (NAM), through a combination of matrix libraries and iterative parallel synthesis. True to certain allosteric ligands, SAR was shallow, and the matrix library approach highlighted the challenges with M5 NAM SAR within in this chemotype. Once again, enantiospecific activity was noted, and potency at rat and human M5 were improved over ML375, along with slight enhancement in physiochemical properties, certain in vitro DMPK parameters and CNS distribution.

View Article and Find Full Text PDF

Background: In small bowel transplantation (SBTx), inhibition of both graft-versus-host disease (GVHD) and allograft rejection is necessary.

Methods: We investigated the potency of a new sphingosine-1-phosphate receptor agonist, W-061, for these two immune responses in SBTx. W-061 has a completely different molecular structure from FTY720.

View Article and Find Full Text PDF

Structure-activity relationship (SAR) of sphingosine-1-phosphate receptor agonists with a dihydronaphthalene scaffold was investigated. Compound 1 was modified to improve S1P(1) agonistic activity and in vivo peripheral lymphocyte lowering (PLL) activity without impairing selectivity over S1P(3) agonistic activity. A detailed SAR study of the terminal lipophilic part revealed that the introduction of substituents on the propylene linker and the terminal benzene ring influences in vitro and PLL activities.

View Article and Find Full Text PDF

Although IL-17 is a pro-inflammatory cytokine reportedly involved in various autoimmune inflammatory disorders, its role remains unclear in murine models of colitis. Acute colitis was induced by 2.5% dextran sodium sulfate (DSS) treatment for 5 days.

View Article and Find Full Text PDF

Structure-activity relationship of sphingosine-1-phosphate receptor agonists was examined. Cinnamyl derivative 1 was modified to improve S1P(1) agonistic activity as well as selectivity over S1P(3) agonistic activity. Dihydronaphthalene derivative 10d was identified as a potent S1P(1) receptor agonist with high selectivity against S1P(3) and enhanced efficacy in lowering peripheral lymphocyte counts in mice.

View Article and Find Full Text PDF

Structure-activity relationship of sphingosine-1-phosphate receptor agonist was examined. In terms of reducing the flexibility of molecule, hit compound 1 was modified to improve S1P(1) agonistic activity as well as selectivity over S1P(3) agonistic activity. Novel S1P agonists with cinnamyl scaffold or 1,2,5,6-tetrahydropyridine scaffold were identified.

View Article and Find Full Text PDF