Publications by authors named "Haruo Ohmori"

The (6-4) pyrimidine-pyrimidone photoproduct [(6-4)PP] is a major DNA lesion induced by ultraviolet radiation. (6-4)PP induces complex mutations opposite its downstream bases, in addition to opposite 3' or 5' base, as has been observed through a site-specific translesion DNA synthesis (TLS) assay. The mechanism by which these mutations occur is not well understood.

View Article and Find Full Text PDF

Genotoxic agents cause modifications of genomic DNA, such as alkylation, oxidation, bulky adduct formation, and strand breaks, which potentially induce mutations and changes to the structure or number of genes. Majority of point mutations are generated during error-prone bypass of modified nucleotides (translesion DNA synthesis, TLS); however, when TLS fails, replication forks stalled at lesions eventually result in more lethal effects, formation of double-stranded breaks (DSBs). Here we compared sensitivities to various compounds among mouse embryonic fibroblasts derived from wild-type and knock-out mice lacking one of the three Y-family TLS DNA polymerases (Polη, Polι, and Polκ) or all of them (TKO).

View Article and Find Full Text PDF

Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is triggered by the activity of activation-induced cytidine deaminase (AID). AID induces DNA lesions in variable regions of Ig genes, and error-prone DNA repair mechanisms initiated in response to these lesions introduce the mutations that characterize SHM. Error-prone DNA repair in SHM is proposed to be mediated by low-fidelity DNA polymerases such as those that mediate trans-lesion synthesis (TLS); however, the mechanism by which these enzymes are recruited to AID-induced lesions remains unclear.

View Article and Find Full Text PDF

Translesion DNA synthesis (TLS) by the Y-family DNA polymerases Polη, Polι and Polκ, mediated via interaction with proliferating cell nuclear antigen (PCNA), is a crucial pathway that protects human cells against DNA damage. We report that Polη has three PCNA-interacting protein (PIP) boxes (PIP1, 2, 3) that contribute differentially to two distinct functions, stimulation of DNA synthesis and promotion of PCNA ubiquitination. The latter function is strongly associated with formation of nuclear Polη foci, which co-localize with PCNA.

View Article and Find Full Text PDF

DNA lesions, induced by genotoxic compounds, block the processive replication fork but can be bypassed by specialized translesion synthesis (TLS) DNA polymerases (Pols). TLS safeguards the completion of replication, albeit at the expense of nucleotide substitution mutations. We studied the in vivo role of individual TLS Pols in cellular responses to benzo[a]pyrene diolepoxide (BPDE), a polycyclic aromatic hydrocarbon, and 4-hydroxynonenal (4-HNE), a product of lipid peroxidation.

View Article and Find Full Text PDF

The DNA synthesis across DNA lesions, termed translesion synthesis (TLS), is a complex process influenced by various factors. To investigate this process in mammalian cells, we examined TLS across a benzo[a]pyrene dihydrodiol epoxide-derived dG adduct (BPDE-dG) using a plasmid bearing a single BPDE-dG and genetically engineered mouse embryonic fibroblasts (MEFs). In wild-type MEFs, TLS was extremely miscoding (>90%) with G → T transversions being predominant.

View Article and Find Full Text PDF

Polζ, a DNA polymerase specialized for translesion DNA synthesis (TLS), is comprised of two subunits, the REV3 catalytic subunit and the REV7 accessory subunit. The human REV7 (hREV7) protein is known to interact with hREV3, hREV1 (another TLS protein) and some other proteins such as ADAM9 (a disintegrin and metalloprotease) and ELK-1 (an Ets-like transcription factor). hREV7 is alternatively termed hMAD2L2, because its primary sequence shows 26% identity to that of hMAD2 that plays crucial roles in spindle assembly checkpoint (SAC) via interactions with hMAD1 or hCDC20.

View Article and Find Full Text PDF

Penicilliols A (1) and B (2) are novel 5-methoxy-3(2H)-furanones isolated from cultures of a fungus (Penicillium daleae K.M. Zalessky) derived from a sea moss, and their structures were determined by spectroscopic analyses.

View Article and Find Full Text PDF

Translesion synthesis (TLS) is a DNA damage tolerance mechanism that allows continued DNA synthesis, even in the presence of damaged DNA templates. Mammals have multiple DNA polymerases specialized for TLS, including Poleta, Poliota, and Polkappa. These enzymes show preferential bypass for different lesions.

View Article and Find Full Text PDF

When a replicative DNA polymerase (Pol) is stalled by damaged DNA, a "polymerase switch" recruits specialized translesion synthesis (TLS) DNA polymerase(s) to sites of damage. Mammalian cells have several TLS DNA polymerases, including the four Y-family enzymes (Poleta, Poliota, Polkappa and REV1) that share multiple primary sequence motifs, but show preferential bypass of different DNA lesions. REV1 interacts with Poleta, Poliota, and Polkappa and therefore appears to play a central role during TLS in vivo.

View Article and Find Full Text PDF

Defects in the gene encoding human Poleta result in xeroderma pigmentosum variant (XP-V), an inherited cancer-prone syndrome. Poleta catalyzes efficient and accurate translesion DNA synthesis (TLS) past UV-induced lesions. In addition to Poleta, human cells have multiple TLS polymerases such as Poliota, Polkappa, Polzeta and REV1.

View Article and Find Full Text PDF

All organisms have multiple DNA polymerases specialized for translesion DNA synthesis (TLS) on damaged DNA templates. Mammalian TLS DNA polymerases include Pol eta, Pol iota, Pol kappa, and Rev1 (all classified as "Y-family" members) and Pol zeta (a "B-family" member). Y-family DNA polymerases have highly structured catalytic domains; however, some of these proteins adopt different structures when bound to DNA (such as archaeal Dpo4 and human Pol kappa), while others maintain similar structures independently of DNA binding (such as archaeal Dbh and Saccharomyces cerevisiae Pol eta).

View Article and Find Full Text PDF

Human DNA polymerase iota (Poliota) is one of the Y-family DNA polymerases involved in translesion synthesis (TLS), which allows continued replication at damaged DNA templates. Poliota has a noncanonical PCNA-interacting protein box (PIP-box) within an internal region of the protein. Poliota activity is stimulated by PCNA binding through the noncanonical PIP-box.

View Article and Find Full Text PDF

Proliferating cell nuclear antigen (PCNA) is an evolutionarily conserved protein that forms a ring-shaped homotrimer that functions as a sliding clamp for DNA replication. The rev6-1 mutation of Saccharomyces cerevisiae, which inactivates both translesion DNA synthesis and damage-avoidance pathways while having little effect on normal cell growth, has a G178S substitution in the PCNA protein. Human PCNA protein carrying the G178S substitution was crystallized.

View Article and Find Full Text PDF

Many proteins involved in DNA replication and repair undergo post-translational modifications such as phosphorylation and ubiquitylation. Proliferating cell nuclear antigen (PCNA; a homotrimeric protein that encircles double-stranded DNA to function as a sliding clamp for DNA polymerases) is monoubiquitylated by the RAD6-RAD18 complex and further polyubiquitylated by the RAD5-MMS2-UBC13 complex in response to various DNA-damaging agents. PCNA mono- and polyubiquitylation activate an error-prone translesion synthesis pathway and an error-free pathway of damage avoidance, respectively.

View Article and Find Full Text PDF

Bulky adducts are DNA lesions generated in response to environmental agents including benzo[a]pyrene (a combustion product) and solar ultraviolet radiation. Error-prone replication of adducted DNA can cause mutations, which may result in cancer. To minimize the detrimental effects of bulky adducts and other DNA lesions, S-phase checkpoint mechanisms sense DNA damage and integrate DNA repair with ongoing DNA replication.

View Article and Find Full Text PDF

We have investigated mechanisms that recruit the translesion synthesis (TLS) DNA polymerase Polkappa to stalled replication forks. The DNA polymerase processivity factor PCNA is monoubiquitinated and interacts with Polkappa in cells treated with the bulky adduct-forming genotoxin benzo[a]pyrene dihydrodiol epoxide (BPDE). A monoubiquitination-defective mutant form of PCNA fails to interact with Polkappa.

View Article and Find Full Text PDF

Using fragments of human c-Ha-ras and mouse Ha-ras1 genes containing 8-hydroxyguanine (8-OH-G) in hypermutagenic codon 12, we analyzed the kinetics of DNA synthesis catalyzed by human Polkappa. This translesion DNA polymerase, belonging to the Y-family, was found to be moderately inhibited by the presence of 8-OH-G on either mouse or human templates. From our previous results, inhibition of various polymerases by 8-OH-G increases in the following order: Poleta < Polkappa < Polbeta < Polalpha, showing that major replicative and repair polymerases are more sensitive to this lesion than enzymes belonging to the Y-family.

View Article and Find Full Text PDF

Somatic hypermutation (SHM) occurs in the variable region of immunoglobulin genes in germinal center B cells where it plays an important role in affinity maturation of the T cell-dependent immune response. Although the precise mechanism of SHM is still unknown, it has been suggested that error-prone DNA polymerases (Pol) are involved in SHM. Poliota is a member of the error-prone Y-family of DNA polymerases which exhibit translesion synthesis activity in vitro and are highly mutagenic when replicating on non-damaged DNA templates.

View Article and Find Full Text PDF

Previously we identified an intra-S-phase cell cycle checkpoint elicited by the DNA-damaging carcinogen benzo[a]pyrene-dihydrodiol epoxide (BPDE). Here we have investigated the roles of lesion bypass DNA polymerases polkappa and poleta in the BPDE-induced S-phase checkpoint. BPDE treatment induced the re-localization of an ectopically expressed green fluorescent protein-polkappa fusion protein to nuclear foci containing sites of active DNA synthesis in human lung carcinoma H1299 cells.

View Article and Find Full Text PDF

The carcinogen 2-acetylaminofluorene is metabolically activated in cells and reacts with DNA to form N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF), N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF), and 3-(deoxyguanosin-N(2)()-yl)-2-acetylaminofluorene (dG-N(2)-AAF) DNA adducts. The dG-N(2)-AAF adduct is the least abundant of the three isomers, but it persists in the tissues of animals treated with this carcinogen. The miscoding and mutagenic properties of dG-C8-AAF and dG-C8-AF have been established; these adducts are readily excised by DNA repair enzymes engaged in nucleotide excision repair.

View Article and Find Full Text PDF

Estrogen replacement therapy (ERT), composed of equilenin, is associated with increased risk of breast, ovarian, and endometrial cancers. Several diastereoisomers of unique dC and dA DNA adducts were derived from 4-hydroxyequilenin (4-OHEN), a metabolite of equilenin, and have been detected in women receiving ERT. To explore the miscoding property of 4-OHEN-dC adduct, site-specifically modified oligodeoxynucleotides (Pk-1, Pk-2, Pk-3, and Pk-4) containing a single diastereoisomer of 4-OHEN-dC were prepared by a postsynthetic method.

View Article and Find Full Text PDF

Polkappa is one of many DNA polymerases involved in translesion DNA synthesis (TLS). It belongs to the Y-family of polymerases along with Poleta, Poliota and hREV1. Unlike Poleta encoded by the xeroderma pigmentosum variant (XPV) gene, Polkappa is unable to bypass UV-induced DNA damage in vitro, but it is able to bypass benzo[a]pyrene (B[a]P)-adducted guanines accurately and efficiently.

View Article and Find Full Text PDF

Newly discovered human DNA polymerase (pol) eta and kappa are highly expressed in the reproductive organs, such as testis, ovary, and uterus, where steroid hormones are produced. Because treatment with estrogen increases the risk of developing breast, ovary, and endometrial cancers, miscoding events occurring at model estrogen-derived DNA adducts were explored using pol eta and a truncated form of human pol kappa (pol kappaDeltaC). These enzymes bypassed N(2)-[3-methoxyestra-1,3,5(10)-trien-6-yl]-2'-deoxyguanosine (dG-N(2)-3MeE) and N(6)-[3-methoxyestra-1,3,5(10)-trien-6-yl]-2'-deoxyadenosine (dA-N(6)-3MeE), which were embedded in site-specifically modified oligodeoxynucleotide templates.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: