In addition to the well-accepted taste receptors corresponding to the 6 basic taste qualities, sweet, salty, sour, bitter, umami, and fatty, another type of taste receptor, calcium-sensing receptor (CaSR), is located in taste bud cells. CaSR is called the kokumi receptor because its agonists induce koku (or kokumi), a Japanese word meaning the enhancement of flavor characteristics, such as thickness, mouthfulness, and continuity. Kokumi is an important factor in enhancing food palatability.
View Article and Find Full Text PDFIn addition to the taste receptors corresponding to the six basic taste qualities-sweet, salty, sour, bitter, umami, and fatty-another type of taste receptor, calcium-sensing receptor (CaSR), is found in taste-bud cells. CaSR is called the '' receptor because its agonists increase sweet, salty and umami tastes to induce '', a Japanese word meaning the enhancement of flavor characters such as thickness, mouthfulness, and continuity. is an important factor for enhancing food palatability.
View Article and Find Full Text PDFThe lingual surface potential (LSP), which hyperpolarizes in response to salt and bitter stimuli, is thought to be a bioelectrical signal associated with taste transduction in humans. In contrast, a recent study reported sweet and sour stimuli to evoke a depolarization of the LSP. We questioned the origin of such a depolarization because liquid junction potentials (JPs), which arise at the interfaces of recording electrode and taste solutions, are neglected in the report.
View Article and Find Full Text PDFTaste stimuli can induce a variety of physiological reactions depending on the quality and/or hedonics (overall pleasure) of tastants, for which objective methods have long been desired. In this study, we used artificial intelligence (AI) technology to analyze facial expressions with the aim of assessing its utility as an objective method for the evaluation of food and beverage hedonics compared with conventional subjective (perceived) evaluation methods. The face of each participant (10 females; age range, 21-22 years) was photographed using a smartphone camera a few seconds after drinking 10 different solutions containing five basic tastes with different hedonic tones.
View Article and Find Full Text PDFUpon presentation of a calorically dense diet, rats display hyperphagia driven by increased meal size. The increased meal size and hyperphagia are most robust across the first several days of diet exposure before changes in body weight are evident, thus it is plausible that one of the factors that drives the hyperphagia may be enhanced orosensory responsivity. Here, electrophysiological responses to an array of taste stimuli were recorded from the chorda tympani nerve, a branch of the facial nerve that innervates taste receptors in the anterior tongue, of rats presented a high-energy (45% fat and 17% sucrose) diet for 3 days.
View Article and Find Full Text PDF