Publications by authors named "Haruna Komiya"

Study Objectives: Sleep/wakefulness is regulated by intracellular signaling pathways composed of protein kinases such as salt-inducible kinase 3 (Sik3). Sik3-deficiency in neurons decreases NREM sleep time and electroencephalogram (EEG) delta power during NREM sleep, while Sik3Slp mice lacking a protein kinase A (PKA)-phosphorylation site, S551, show hypersomnia phenotype. In this study, we examined how a phosphomimetic mutation of the 221st threonine residue (T221E), which provides a partial (weak) constitutive activity of the kinase, affects sleep/wakefulness and circadian behavior.

View Article and Find Full Text PDF

Progress has been made in the elucidation of sleep and wakefulness regulation at the neurocircuit level. However, the intracellular signalling pathways that regulate sleep and the neuron groups in which these intracellular mechanisms work remain largely unknown. Here, using a forward genetics approach in mice, we identify histone deacetylase 4 (HDAC4) as a sleep-regulating molecule.

View Article and Find Full Text PDF

Sleep/wake behavior is regulated by distinct groups of neurons, such as dopaminergic, noradrenergic, and orexinergic neurons. Although monoaminergic neurons are usually considered to be wake-promoting, the role of serotonergic neurons in sleep/wake behavior remains inconclusive because of the effect of serotonin (5-HT)-deficiency on brain development and the compensation for inborn 5-HT deficiency by other sleep/wake-regulating neurons. Here, we performed selective ablation of central 5-HT neurons in the newly developed mouse line that was crossed with mice to examine the role of 5-HT neurons in the sleep/wake behavior of adult mice.

View Article and Find Full Text PDF

Study Objectives: In humans and other mammals, sleep is altered during pregnancy. However, no studies have been conducted on sleep/wakefulness during pregnancy in mice. In this study, we examined sleep/wakefulness in female C57BL/6 mice during pregnancy.

View Article and Find Full Text PDF

Sleep is conserved from invertebrates to vertebrates, and is tightly regulated in a homeostatic manner. The molecular and cellular mechanisms that determine the amount of rapid eye movement sleep (REMS) and non-REMS (NREMS) remain unknown. Here we identify two dominant mutations that affect sleep and wakefulness by using an electroencephalogram/electromyogram-based screen of randomly mutagenized mice.

View Article and Find Full Text PDF

Objectives: Our 2007 study of 32 patients with ovarian cancer reported the possible involvement of tissue factor (TF) in the development of venous thromboembolism (VTE) before treatment, especially in clear cell carcinoma (CCC). This follow-up study further investigated this possibility in a larger cohort.

Methods: We investigated the intensity of TF expression (ITFE) and other variables for associations with VTE using univariate and multivariate analyses in 128 patients with epithelial ovarian cancer initially treated between November 2004 and December 2010, none of whom had received neoadjuvant chemotherapy.

View Article and Find Full Text PDF

The discovery of leptin substantiated the usefulness of a forward genetic approach in elucidating the molecular network regulating energy metabolism. However, no successful dominant screening for obesity has been reported, which may be due to the influence of quantitative trait loci between the screening and counter strains and the low fertility of obese mice. Here, we performed a dominant screening for obesity using C57BL/6 substrains, C57BL/6J and C57BL/6N, with the routine use of in vitro fertilization.

View Article and Find Full Text PDF