Publications by authors named "Harun Najib Noristani"

Spinal cord injury (SCI) leads to persistent neurological deficits without available curative treatment. After SCI astrocytes within the lesion vicinity become reactive, these undergo major morphological, and molecular transformations. Previously, we reported that following SCI, over 10% of resident astrocytes surrounding the lesion spontaneously transdifferentiate towards a neuronal phenotype.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a disastrous event causing irreversible loss of both sensory and motor function. After SCI, both ascending dorsal column axons and descending corticospinal tract (CST) axons undergo rapid degeneration that is subsequently followed by slow axonal dieback and retraction bulb formation. Pre-clinical studies over the last two decades using genetic and, to a lesser extent, pharmacological approaches have identified several molecules that regulate intrinsic axon regeneration after SCI.

View Article and Find Full Text PDF
Article Synopsis
  • * RNA profiling revealed that after injury, these cells activate specific signaling pathways (STAT3 and ERK/MAPK) and drastically upregulate 510 genes while downregulating others related to cilia formation.
  • * The study suggests that the interaction between microglial cells and the Osmr/Oncostatin pathway influences the differentiation of ependymal cells towards astrocytes after spinal cord injuries.
View Article and Find Full Text PDF

Spinal cord injury (SCI) is a tragic event causing irreversible losses of sensory, motor, and autonomic functions, that may also be associated with chronic neuropathic pain. Serotonin (5-HT) neurotransmission in the spinal cord is critical for modulating sensory, motor, and autonomic functions. Following SCI, 5-HT axons caudal to the lesion site degenerate, and the degree of axonal degeneration positively correlates with lesion severity.

View Article and Find Full Text PDF

Spinal cord injury (SCI) induces a pronounced neuroinflammation driven by activation and proliferation of resident microglia as well as infiltrating peripheral monocyte-derived macrophages. Depending on the time post-lesion, positive and detrimental influences of microglia/macrophages on axonal regeneration had been reported after SCI, raising the issue whether their modulation may represent an attractive therapeutic strategy. Colony-stimulating factor 1 (CSF1) regulates microglia/macrophages proliferation, differentiation and survival thus, pharmacological treatments using CSF1 receptor (CSF1R) inhibitors had been used to ablate microglia.

View Article and Find Full Text PDF

Spinal cord injuries (SCI) are neuropathologies causing enormous physical and emotional anguish as well as irreversibly disabilities with great socio/economic burdens to our society. The availability of multiple mouse strains is important for studying the underlying pathophysiological response after SCI. Although strain differences have been shown to directly affect spontaneous functional recovery following incomplete SCI, its influence after complete lesion of the spinal cord is unclear.

View Article and Find Full Text PDF

Background: Neurons have intrinsic capability to regenerate after lesion, though not spontaneously. Spinal cord injury (SCI) causes permanent neurological impairments partly due to formation of a glial scar that is composed of astrocytes and microglia. Astrocytes play both beneficial and detrimental roles on axonal re-growth, however, their precise role after SCI is currently under debate.

View Article and Find Full Text PDF

Background: There is growing evidence that microglia are key players in the pathological process of amyotrophic lateral sclerosis (ALS). It is suggested that microglia have a dual role in motoneurone degeneration through the release of both neuroprotective and neurotoxic factors.

Results: To identify candidate genes that may be involved in ALS pathology we have analysed at early symptomatic age (P90), the molecular signature of microglia from the lumbar region of the spinal cord of hSOD1(G93A) mice, the most widely used animal model of ALS.

View Article and Find Full Text PDF