To estimate allele frequency of single-nucleotide polymorphisms (SNPs) in pooled DNAs with secondary structures, an affinity capillary electrophoresis was developed using an allele-specific peptide nucleic acid probe modified with polyethylene glycol. This probe disrupted secondary structures of DNA analytes and hybridized to them during electrophoresis. Such DNA-binding capability allowed separation of the folded analytes with a single-base difference within 20 min.
View Article and Find Full Text PDFQuantitative SNP detection was demonstrated with an ACE using a PEG-oligodeoxyribonucleotide block copolymer (PEG-b-ODN) as a probe in the presence of an EOF. The probe's PEG segment with large molecular weight and small polydispersity yielded a high resolution in the separation of a chemically synthesized 60-base ssDNA (WT) and its single-base-substituted mutant (MT). A mixture of WT and MT was clearly separated within 10 min by simultaneously using two types of PEG-b-ODN probes whose ODN segments were complementary to WT and MT and whose PEG segments were of different lengths.
View Article and Find Full Text PDFAn affinity capillary electrophoresis method was developed to determine a binding constant between a peptide nucleic acid (PNA) and a hairpin-structured DNA. A diblock copolymer composed of PNA and polyethylene glycol (PEG) was synthesized as a novel affinity probe. The base sequence of the probe's PNA segment was complementary to a hairpin-structured region of a 60-base single-stranded DNA (ssDNA).
View Article and Find Full Text PDF