Publications by authors named "Haruki Oga"

The contact line (CL) is where solid, liquid, and vapor phases meet, and Young's equation describes the macroscopic force balance of the interfacial tensions between these three phases. These interfacial tensions are related to the nanoscale stress inhomogeneity appearing around the interface, and for curved CLs, e.g.

View Article and Find Full Text PDF

Solid-liquid friction plays a key role in nanofluidic systems. Following the pioneering work of Bocquet and Barrat, who proposed to extract the friction coefficient (FC) from the plateau of the Green-Kubo (GK) integral of the solid-liquid shear force autocorrelation, the so-called plateau problem has been identified when applying the method to finite-sized molecular dynamics simulations, e.g.

View Article and Find Full Text PDF

Molecular dynamics simulations are a powerful tool to characterize liquid-solid friction. A slab configuration with periodic boundary conditions in the lateral dimensions is commonly used, where the measured friction coefficient could be affected by the finite lateral size of the simulation box. Here we show that for a very wetting liquid close to its melting temperature, strong finite size effects can persist up to large box sizes along the flow direction, typically ∼30 particle diameters.

View Article and Find Full Text PDF