Recently, polyamides have been widely used in various fields due to their excellent durability, thermal stability, and other advantageous properties. However, polyamide products that end up in oceans have become a source of microplastics. For this reason, the development of highly degradable polyamides is greatly desired.
View Article and Find Full Text PDFMicroplastics have recently been identified as one of the major contributors to environmental pollution. To design and control the biodegradability of polymer materials, it is crucial to obtain a better understanding of the aggregation states and thermal molecular motion of polymer chains in aqueous environments. Here, we focus on melt-spun microfibers of a promising biodegradable plastic, polyamide 4 (PA4), with a relatively greater number density of hydrolyzable amide groups, which is regarded as an alternative to polyamide 6.
View Article and Find Full Text PDF