Publications by authors named "Haruka Ochiai"

Speech-sound stimuli have a complex structure, and it is unclear how the brain processes them. An event-related potential (ERP), known as mismatch negativity (MMN), is elicited when an individual's brain detects a rare sound. In this study, MMNs were measured in response to an omitted segment of a complex sound consisting of a Japanese vowel.

View Article and Find Full Text PDF

Background: Cognitive decline after oral administration of sedatives, such as benzodiazepines, is a serious side effect. Suvorexant, an orexin receptor antagonist, has a favorable tolerability and a limited side-effect profile.

Aim: The purpose of this study was to estimate the cognitive decline 1 day after oral medication with lormetazepam, a benzodiazepine, and suvorexant by comparing mismatch negativity (MMN) and P300 reflecting auditory discrimination function.

View Article and Find Full Text PDF

Rationale: As a treatment for cognitive dysfunction in schizophrenia, oxytocin nasal sprays potentially improve social cognition, facial expression recognition, and sense of smell. Mismatch negativity (MMN) is an event-related potential (ERP) reflecting auditory discrimination while MMN deficits reflect cognitive function decline in schizophrenia.

Objectives: To determine whether oxytocin nasal spray affects auditory MMN METHODS: We measured ERPs in healthy subjects during an auditory oddball task, both before and after oxytocin nasal spray administration.

View Article and Find Full Text PDF

The human brain can automatically detect sound changes. Previous studies have reported that rare sounds presented within a sequence of repetitive sounds elicit the mismatch negativity (MMN) in the absence of attention in the latency range of 100-250 ms. On the other hand, a previous study discovered that occasional changes in sound location enhance the middle latency response (MLR) elicited in the latency range of 10-50 ms.

View Article and Find Full Text PDF

Mismatch negativity (MMN) is a component of auditory event-related potentials that reflects automatic change detection in the brain, showing qualities of endophenotypes in schizophrenia. MMN deficiency is one of the robust findings in patients, and it reflects both cognitive and functional decline. Catechol-o-methyltransferase (COMT) is a key enzyme involved in regulating dopamine transmission within the prefrontal cortex.

View Article and Find Full Text PDF