Publications by authors named "Haruhito Takano"

Background: Chronotropic incompetence (CI), an attenuated heart rate (HR) response to exercise, is common in patients with cardiovascular disease. The aim of this study was to assess changes in the chronotropic response (CR) during cardiopulmonary exercise testing (CPET) in patients undergoing cardiac rehabilitation and investigate the effects of β-blockers.

Methods: Patients undergoing cardiac rehabilitation performed CPET.

View Article and Find Full Text PDF

The purpose of this study was to investigate the precise pattern of stroke volume (SV) response during exercise in patients with chronic heart failure (CHF) compared with age-matched controls. Fourteen patients with CHF and 7 controls performed symptom-limited bicycle exercise testing with respiratory gas exchange measurement. Patients were classified into group A (n = 7) with peak VO2 ≥ 18.

View Article and Find Full Text PDF

Background: Inflammatory markers such as serum C-reactive protein (CRP), serum amyloid A (SAA), and plasma pentraxin 3 (PTX3), which belong to the pentraxin superfamily, increase due to various inflammatory diseases. Some studies demonstrated that serum CRP and SAA are predictors of cardiovascular diseases, and cardiac rehabilitation (CR) induces anti-inflammatory effects. In the present study, we investigated the effects of CR on pentraxins (serum CRP, SAA, and plasma PTX3) in patients with cardiovascular diseases.

View Article and Find Full Text PDF

High-intensity exercise shares similarities with acute phase responses of inflammatory diseases. We investigated the influences of acute exercise on inflammatory markers, plasma pentraxin3 (PTX3) and serum high-sensitive C-reactive protein (CRP) (hsCRP). Nine healthy male subjects (41 ± 3 years old) participated.

View Article and Find Full Text PDF

Voltage-gated Ca(2+) channels (Ca(V)) are ubiquitously expressed in various cell types and play vital roles in regulation of cellular functions including proliferation. However, the molecular identities and function of Ca(V) remained unexplored in preadipocytes. Therefore, whole cell voltage-clamp technique, conventional/quantitative real-time RT-PCR, Western blot, small interfering RNA (siRNA) experiments, and immunohistochemical analysis were applied in mouse primary cultured preadipocytes as well as mouse 3T3-L1 preadipocytes.

View Article and Find Full Text PDF

The effect of low-intensity resistance exercise with external limb compression (100 [EC100] and 160 [EC160] mm Hg) on limb blood flow and venous blood gas-metabolite response was investigated and compared with that of high-intensity resistance exercise (no external compression). Unilateral elbow flexion muscle contractions were performed at 20% (75 repetitions, 4 sets, 30-second rest intervals) and 70% of 1-repetition maximum (1-RM; 3 sets, each set was until failure, 3-minute rest intervals). Precontraction brachial arterial blood flow (Doppler ultrasound) was reduced with EC100 or EC160 (56% and 39% of baseline value, respectively) compared with no external compression (control).

View Article and Find Full Text PDF

Recent studies have demonstrated that even a low-intensity resistance exercise can effectively induce muscle hypertrophy and strength increase when combined with moderate blood flow restriction (BFR) into the exercising muscle. Although serious side effects of low-intensity resistance exercise with BFR have not been reported, a concern of thrombosis has been suggested, because this type of exercise is performed with restricted venous blood flow and pooling of blood in extremities. Thus, the purpose of this study was to investigate the effects of low-intensity resistance exercise with BFR on coagulation system in healthy subjects.

View Article and Find Full Text PDF

Voltage-gated Na(+) channel currents (I(Na)) are expressed in several types of smooth muscle cells. The purpose of this study was to evaluate the expression of I(Na), its functional role, pathophysiology in cultured human (hASMCs) and rabbit aortic smooth muscle cells (rASMCs), and its association with vascular intimal hyperplasia. In whole cell voltage clamp, I(Na) was observed at potential positive to -40 mV, was blocked by tetrodotoxin (TTX), and replacing extracellular Na(+) with N-methyl-d-glucamine in cultured hASMCs.

View Article and Find Full Text PDF

The KAATSU training is a unique method of muscle training with restricting venous blood flow, which might be applied to prevent muscle atrophy during space flight, but the effects of KAATSU in microgravity remain unknown. We investigated the hemodynamic responses to KAATSU during actually simulated weightlessness (6 degrees head-down tilt for 24 h, n = 8), and compared those to KAATSU in the seated position before bed rest. KAATSU was applied to the proximal ends of both the thighs.

View Article and Find Full Text PDF

Voltage-gated Na(+) channel (I(Na)) encoded by SCN9A mRNA is expressed in cultured human bronchial smooth muscle cells. We investigated the effects of dexamethasone on I(Na), by using whole-cell voltage clamp techniques, reverse transcriptase/polymerase chain reaction (RT-PCR), and quantitative real-time RT-PCR. Acute application of dexamethasone (10(-6) M) did not affect I(Na).

View Article and Find Full Text PDF

The application of an orthostatic stress such as lower body negative pressure (LBNP) has been proposed to minimize the effects of weightlessness on the cardiovascular system and subsequently to reduce the cardiovascular deconditioning. The KAATSU training is a novel method to induce muscle strength and hypertrophy with blood pooling in capacitance vessels by restricting venous return. Here, we studied the hemodynamic, autonomic nervous and hormonal responses to the restriction of femoral blood flow by KAATSU in healthy male subjects, using the ultrasonography and impedance cardiography.

View Article and Find Full Text PDF

Overproduction of nitric oxide by inducible nitric oxide synthase contributes to the progression of cardiovascular disease. We investigated the effects of azelnidipine and other Ca2+-channel blockers on nitric oxide production by cultured aortic smooth muscle cells isolated from Wistar rats and human umbilical vein endothelial cells (HUVECs), using the Griess reaction and oxyhemoglobin method. Release of lactic dehydrogenase (LDH) was measured to evaluate cell damage, and immunohistochemistry was performed to examine the expression of inducible nitric oxide synthase and nitrotyrosine protein.

View Article and Find Full Text PDF

Amiodarone (AM) is a potent vasodilator and exhibits diverse cardiovascular protective effects in vivo, but their underlying mechanisms remain unsettled. We investigated the effects of AM and N-desethylamiodarone (DEA), the major metabolite of AM, on endothelial nitric oxide (NO) production using cultured human umbilical vein endothelial cells (HUVECs). The release of NO was evaluated as measured by nitrite, a stable metabolite of NO, using the Griess reaction and also measured directly by a NO-selective electrode.

View Article and Find Full Text PDF

We investigated the hemodynamic and hormonal responses to a short-term low-intensity resistance exercise (STLIRE) with the reduction of muscle blood flow. Eleven untrained men performed bilateral leg extension exercise under the reduction of muscle blood flow of the proximal end of both legs pressure-applied by a specially designed belt (a banding pressure of 1.3 times higher than resting systolic blood pressure, 160-180 mmHg), named as Kaatsu.

View Article and Find Full Text PDF

Endothelin-1 is known to be implicated in the pathogenesis of hepatobiliary diseases such as cirrhosis, especially in portal hypertension. This study aimed to investigate the effects of ursodeoxycholic acid on endothelin-1 production in human endothelial cells. The effects of ursodeoxycholic acid and its conjugates (tauroursodeoxycholic and glycoursodeoxycholic acids) on endothelin-1 production as well as nitric oxide (NO) in human umbilical vein endothelial cells (HUVECs) were examined.

View Article and Find Full Text PDF

Pulmonary artery obstruction is a rare complication of acute thoracic aortic dissection. A 74-year-old woman was admitted to hospital with respiratory distress. Computed tomography scan showed right pulmonary artery occlusion and a thoracic aortic dissection of the Stanford A type.

View Article and Find Full Text PDF