Publications by authors named "Haruhisa Sato"

Mitochondrial ferritin (MtF) has been identified as a novel ferritin encoded by an intron-lacking gene with specific mitochondrial localization located on chromosome 5q23.1. MtF has been associated with neurodegenerative disorders such as Friedreich ataxia and restless leg syndrome.

View Article and Find Full Text PDF

We and others have previously reported that lactoferrin (LF), which acts as both an iron-binding protein and an inflammatory modulator, is strongly up-regulated in the brains of patients with Alzheimer's disease (AD). We have also studied the expression and localization of LF mRNA in the brain cortices of patients with AD. In this study, we investigated immunohistochemically the localization of LF in the brains of APP-transgenic mice, representing a model of AD.

View Article and Find Full Text PDF

Despite the potentially protective effects of estrogen on bone and cardiovascular tissue as well as against kidney diseases, its effects on diabetic nephropathy are unknown. Here, we examined the therapeutic effectiveness of 17beta-estradiol and raloxifene, a selective estrogen receptor modulator, for preventing functional and histological alterations in the kidneys of db/db mice, a model of type 2 diabetes. In the first experiment, ovariectomized female db/db mice were treated with 17beta-estradiol for 8 weeks.

View Article and Find Full Text PDF

We have previously reported that N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), which is a tetrapeptide hydrolyzed by ACE, inhibits the transforming growth factor-beta (TGF-beta)-induced expression of extracellular matrix proteins via inhibition of the Smad signaling in human mesangial cells. To test in vivo the antifibrotic efficacy of Ac-SDKP, we examined whether long-term Ac-SDKP treatment can prevent renal insufficiency and glomerulosclerosis in diabetic db/db mice. Diabetic db/db mice or nondiabetic db/m mice were treated with Ac-SDKP for 8 weeks using osmotic minipumps.

View Article and Find Full Text PDF

Magnetic labeling of transplanted cells permits us to monitor their localization non-invasively using MRI. Since most transfection agents for magnetic labeling have the same cationic charge as Fe(3+), the efficiency may be reduced. The hemagglutinating virus-envelope has no charge and utilizes membrane fusion activity to deliver internalized materials.

View Article and Find Full Text PDF