Ribbon synapses transmit information in sensory systems, but their development is not well understood. To test the hypothesis that ribbon assembly stabilizes nascent synapses, we performed simultaneous time-lapse imaging of fluorescently-tagged ribbons in retinal cone bipolar cells (BCs) and postsynaptic densities (PSD95-FP) of retinal ganglion cells (RGCs). Ribbons and PSD95-FP clusters were more stable when these components colocalized at synapses.
View Article and Find Full Text PDFSensory processing can be tuned by a neuron's integration area, the types of inputs, and the proportion and number of connections with those inputs. Integration areas often vary topographically to sample space differentially across regions. Here, we highlight two visual circuits in which topographic changes in the postsynaptic retinal ganglion cell (RGC) dendritic territories and their presynaptic bipolar cell (BC) axonal territories are either matched or unmatched.
View Article and Find Full Text PDFThe fovea is a specialized region of the retina that dominates the visual perception of primates by providing high chromatic and spatial acuity. While the foveal and peripheral retina share a similar core circuit architecture, they exhibit profound functional differences whose mechanisms are unknown. Using intracellular recordings and structure-function analyses, we examined the cellular and synaptic underpinnings of the primate fovea.
View Article and Find Full Text PDFLabeling fixed brain tissue with fluorescent synaptic and cellular markers can help assess circuit connectivity. Despite the diffraction-limited resolution of light microscopy there are several approaches to identify synaptic contacts onto a cell-of-interest. Understanding which image quantification methods can be applied to estimate cellular and synaptic connectivity at the light microscope level is beneficial to answer a range of questions, from mapping appositions between cellular structures or synaptic proteins to assessing synaptic contact density onto a cell-of-interest.
View Article and Find Full Text PDFExcitatory and inhibitory neurons in the CNS are distinguished by several features, including morphology, transmitter content, and synapse architecture [1]. Such distinctions are exemplified in the vertebrate retina. Retinal bipolar cells are polarized glutamatergic neurons receiving direct photoreceptor input, whereas amacrine cells are usually monopolar inhibitory interneurons with synapses almost exclusively in the inner retina [2].
View Article and Find Full Text PDFExpansion microscopy is a technique in which fluorophores on fixed specimens are linked to a swellable polymer that is physically expanded to enable super-resolution microscopy with ordinary microscopes. We have developed and characterized new methods for linking fluorophores to the polymer that now enable expansion microscopy with conventional fluorescently labeled antibodies and fluorescent proteins. Our methods simplify the procedure and expand the palette of compatible labels, allowing rapid dissemination of the technique.
View Article and Find Full Text PDFNeuronal output is modulated by inhibition onto both dendrites and axons. It is unknown whether inhibitory synapses at these two cellular compartments of an individual neuron are regulated coordinately or separately during in vivo development. Because neurotransmission influences synapse maturation and circuit development, we determined how loss of inhibition affects the expression of diverse types of inhibitory receptors on the axon and dendrites of mouse retinal bipolar cells.
View Article and Find Full Text PDFAcross the nervous system, neurons form highly stereotypic patterns of synaptic connections that are designed to serve specific functions. Mature wiring patterns are often attained upon the refinement of early, less precise connectivity. Much work has led to the prevailing view that many developing circuits are sculpted by activity-dependent competition among converging afferents, which results in the elimination of unwanted synapses and the maintenance and strengthening of desired connections.
View Article and Find Full Text PDFStructure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species.
View Article and Find Full Text PDFNeurons receive input from diverse afferents but form stereotypic connections with each axon type to execute their precise functions. Developmental mechanisms that specify the connectivity of individual axons across populations of converging afferents are not well-understood. Here, we untangled the contributions of activity-dependent and independent interactions that regulate the connectivity of afferents providing major and minor input onto a neuron.
View Article and Find Full Text PDFUnderstanding a sensory system implies the ability to predict responses to a variety of inputs from a common model. In the retina, this includes predicting how the integration of signals across visual space shapes the outputs of retinal ganglion cells. Existing models of this process generalize poorly to predict responses to new stimuli.
View Article and Find Full Text PDFThe high sensitivity of scotopic vision depends on the efficient retinal processing of single photon responses generated by individual rod photoreceptors. At the first synapse in the mammalian retina, rod outputs are pooled by a rod "ON" bipolar cell, which uses a G-protein signaling cascade to enhance the fidelity of the single photon response under conditions where few rods absorb light. Here we show in mouse rod bipolar cells that both splice variants of the G(o) α subunit, Gα(o1) and Gα(o2), mediate light responses under the control of mGluR6 receptors, and their coordinated action is critical for maximizing sensitivity.
View Article and Find Full Text PDFThe sensitivity of receptor cells places a fundamental limit upon the sensitivity of sensory systems. For example, the signal-to-noise ratio of sensory receptors has been suggested to limit absolute thresholds in the visual and auditory systems. However, the necessity of optimally processing sensory receptor signals for behaviour to approach this limit has received less attention.
View Article and Find Full Text PDFMembers of the R7 family of the regulators of G-protein signaling (R7 RGS) proteins form multi-subunit complexes that play crucial roles in processing the light responses of retinal neurons. The disruption of these complexes has been shown to lead to the loss of temporal resolution in retinal photoreceptors and deficient synaptic transmission to downstream neurons. Despite the well established role of one member of this family, RGS9-1, in controlling vertebrate phototransduction, the roles and organizational principles of other members in the retina are poorly understood.
View Article and Find Full Text PDFWhy do vertebrates use rods and cones that hyperpolarize, when in insect eyes a single depolarizing photoreceptor can function at all light levels? We answer this question at least in part with a comprehensive assessment of ATP consumption for mammalian rods from voltages and currents and recently published physiological and biochemical data. In darkness, rods consume 10(8) ATP s(-1), about the same as Drosophila photoreceptors. Ion fluxes associated with phototransduction and synaptic transmission dominate; as in CNS, the contribution of enzymes of the second-messenger cascade is surprisingly small.
View Article and Find Full Text PDFComplexes of regulator of G-protein signaling (RGS) proteins with G-protein beta5 (Gbeta5) subunits are essential components of signaling pathways that regulate the temporal characteristics of light-evoked responses in vertebrate retinal photoreceptors and ON-bipolar cells. Recent studies have found that RGS/Gbeta5 complexes bind to a new family of adapter proteins, R9AP (RGS9 anchor protein) and R7 family binding protein (R7BP), that in case of the RGS9/Gbeta5 complex were shown to determine its precise subcellular targeting to either the outer segment of photoreceptors or postsynaptic structures of striatal neurons, respectively. In this study, we establish that another trimeric complex consisting of RGS7, Gbeta5, and R7BP subunits is specifically targeted to the dendritic tips of retinal bipolar cells.
View Article and Find Full Text PDFPhysiology (Bethesda)
August 2007
Our ability to see in dim light is limited by the statistics of light absorption in rod photoreceptors and the faithful transmission of the light-evoked signals through the retina. This article reviews the physiological mechanisms at the synapse between rods and rod bipolar cells, the first relay in a pathway that mediates vision near absolute threshold.
View Article and Find Full Text PDFTRPM4 is a Ca(2+)-activated nonselective cation channel that regulates membrane potential in response to intracellular Ca(2+) signaling. In lymphocytes it plays an essential role in shaping the pattern of intracellular Ca(2+) oscillations that lead to cytokine secretion. To better understand its role in this and other physiological processes, we investigated mechanisms by which TRPM4 is regulated.
View Article and Find Full Text PDF