Publications by authors named "Haruhisa Ogita"

Systemic administration of a Toll-like receptor 7 (TLR7) agonist is effective to in suppressing Th2 derived inflammation, however systemic induction of various cytokines such as IL-6, IL-12, and type I interferon (IFN) is observed. This cytokine induction would be expected to cause flu-like symptoms. We have previously reported adenine compounds (3, 4) as interferon inducing agents acting as TLR7 agonists.

View Article and Find Full Text PDF

Recently we reported the adenine derivatives 3a-d as novel interferon (IFN) inducers. In the present study, we conducted a detailed structure-activity relationship study of analogues of 3a-d with respect to their IFN-inducing activity, mainly focusing on the N(9)-position of the adenine. From this study, we found that introduction of the 3-pyridylmethyl moiety was effective to increase in vitro activity, and compound 9ae was identified as being the most potent IFN inducer.

View Article and Find Full Text PDF

In order to improve the oral bioavailability of 9-benzyl-8-hydroxy-2-(2-hydroxyethylthio)adenine (SM-295072), a potent interferon (IFN) inducing agent, we synthesized prodrugs of it by utilizing the hydroxy groups at the C(2)-side chain and/or the C(8)-position. The carbonate prodrug at the C(8)-position was more effective than that at the C(2)-side chain for oral absorption in rats. Among the compounds prepared, compound 6 demonstrated the most preferable prodrug properties, and the maximum plasma concentration of 6 was approximately 4-fold higher than that of SM-295072.

View Article and Find Full Text PDF

In order to create novel compounds which possess potent interferon (IFN) inducing activities with excellent oral bioavailabilities, a series of 8-hydroxyadenines, which have various alkoxy or alkylthio moieties at the adenine C(2)-position, were synthesized and evaluated. The introduction of hydrophobic groups was not considered to be effective for potentiating the IFN-inducing activity, but several compounds having hydrophilic groups were effective. Among the compounds tested, compound 13f induced IFN from the dosage of 0.

View Article and Find Full Text PDF

Recently, we have reported the 8-hydroxyadenine derivatives (2-4) as a novel class of interferon (IFN) inducing agents. In the present study, a series of 8-hydroxyadenines, which possess various amino moieties at the adenine C(2)-position, were synthesized and evaluated for their ability to induce endogenous IFN in comparison to the known active agent, Imiquimod. Among the compounds prepared, compound 9o possessing a 2-methoxyethylamino group at C(2)-position of adenine was found to exhibit potent IFN inducing activity in vivo.

View Article and Find Full Text PDF

Recently we reported the adenine derivatives (2-4) as new interferon (IFN) inducers. In the present study, we conducted a detailed structure and activity relationship study of 4 and its related derivatives on IFN inducing activity. From this study, we found that compound 4 exhibited the most potent IFN inducing activity in vitro with a minimum effective concentration of 0.

View Article and Find Full Text PDF

A series of diarylamide urea derivatives were synthesized and evaluated for their inhibitory activities against human coronary artery smooth muscle cells (SMCs) and human coronary artery endothelial cells (ECs). Compound 2h was much superior to Tranilast, in terms of both the potency of its inhibitory activity toward the proliferation of SMCs and the cell selectivity.

View Article and Find Full Text PDF

9-Benzyl-8-hydroxyadenine (6) was found to possess interferon-inducing activity in vitro as a lead compound. Although replacement of the 9-benzyl group of 6 did not improve the activity, the introduction of a substituent such as alkyl, alkylthio, alkylamino, and alkoxy groups into the 2-position of the adenine ring resulted in a remarkable increase in the activity. The 2-alkylthio (30-32), 2-butylamino (41), and 2-butoxy (47) analogues indicated the highest activities by oral administration to mice.

View Article and Find Full Text PDF

A series of diarylamide urea derivatives were synthesized and evaluated for their inhibitory activities against human coronary artery endothelial cells (ECs) and human coronary artery smooth muscle cells (SMCs). Compound was superior to Tranilast, in terms of both cell selectivity and the potency of its inhibitory activity toward the proliferation and angiogenesis of ECs.

View Article and Find Full Text PDF

A series of diarylamide urea derivatives were synthesized and evaluated for their inhibitory activities against human coronary artery smooth muscle cells (SMCs) and human coronary artery endothelial cells (ECs). Compound 2o was superior to the lead compound, Tranilast, in terms of its potency of the inhibitory activity and cell selectivity.

View Article and Find Full Text PDF