Publications by authors named "Haruhiko Nishimura"

Introduction: The deep echo state network (Deep-ESN) architecture, which comprises a multi-layered reservoir layer, exhibits superior performance compared to conventional echo state networks (ESNs) owing to the divergent layer-specific time-scale responses in the Deep-ESN. Although researchers have attempted to use experimental trial-and-error grid searches and Bayesian optimization methods to adjust the hyperparameters, suitable guidelines for setting hyperparameters to adjust the time scale of the dynamics in each layer from the perspective of dynamical characteristics have not been established. In this context, we hypothesized that evaluating the dependence of the multi-time-scale dynamical response on the leaking rate as a typical hyperparameter of the time scale in each neuron would help to achieve a guideline for optimizing the hyperparameters of the Deep-ESN.

View Article and Find Full Text PDF

The echo state network (ESN) is an excellent machine learning model for processing time-series data. This model, utilising the response of a recurrent neural network, called a reservoir, to input signals, achieves high training efficiency. Introducing time-history terms into the neuron model of the reservoir is known to improve the time-series prediction performance of ESN, yet the reasons for this improvement have not been quantitatively explained in terms of reservoir dynamics characteristics.

View Article and Find Full Text PDF

Introduction: Continuous monitoring of relative blood volume (percentage BV) in hemodialysis (HD) is critical for determining dry weight and preventing intradialytic hypotension. However, the cause of the BV variation remains unknown. This research aimed to examine factors that influence the percentage BV.

View Article and Find Full Text PDF

Purpose: Cancer Consultation and Support Centres (CCSCs) in Japan have been established at designated cancer hospitals nationwide and these centres provide information and consultation support for cancer care. The purpose of this study is to analyse the status and content of consultations during the COVID-19 pandemic using consultation record data from the Cancer Consultation Support Centre (CCSC) database from January 2020 to March 2021.

Methods: First, we examined the number and percentage of cases involving and not involving COVID-19 and compared the items of the entry forms between the groups.

View Article and Find Full Text PDF

In recent years, as a treatment for mental disorders in addition to drug treatment, a non-drug treatment called chronotherapy has been attracting attention. However, the achievement of optimized chronotherapy for each subject's condition requires that the disturbance of the patient's circadian rhythm must be captured over a long duration. Therefore, it is necessary to develop biomarkers that are easy to measure, quantitative, and continuously measured.

View Article and Find Full Text PDF

The purpose of this study is to extract features and structure them using text mining and to analyze changes over time on consultation records accumulated in a cancer consultation and support center database from 2009 to 2018. The text-mining approach worked effectively under conditions of expanding data, and a co-occurrence network revealed patterns and trends in the content of consultations.

View Article and Find Full Text PDF

Reduced integrity of neural pathways from frontal to sensory cortices has been suggested as a potential neurobiological basis of attention-deficit hyperactivity disorder. Neurofeedback has been widely applied to enhance reduced neural pathways in attention-deficit hyperactivity disorder by repeated training on a daily temporal scale. Clinical and model-based studies have demonstrated that fluctuations in neural activity underpin sustained attention deficits in attention-deficit hyperactivity disorder.

View Article and Find Full Text PDF

Despite growing evidence that high creativity leads to mental well-being in older individuals, the neurophysiological bases of creativity remain elusive. Creativity reportedly involves multiple brain areas and their functional interconnections. In particular, functional magnetic resonance imaging (fMRI) is used to investigate the role of patterns of functional connectivity between the default network and other networks in creative activity.

View Article and Find Full Text PDF

Cortical neural networks maintain autonomous electrical activity called spontaneous activity that represents the brain's dynamic internal state even in the absence of sensory stimuli. The spatio-temporal complexity of spontaneous activity is strongly related to perceptual, learning, and cognitive brain functions; multi-fractal analysis can be utilized to evaluate the complexity of spontaneous activity. Recent studies have shown that the deterministic dynamic behavior of spontaneous activity especially reflects the topological neural network characteristics and changes of neural network structures.

View Article and Find Full Text PDF

Chronotherapy is a treatment for mood disorders, including major depressive disorder, mania, and bipolar disorder (BD). Neurotransmitters associated with the pathology of mood disorders exhibit circadian rhythms. A functional deficit in the neural circuits related to mood disorders disturbs the circadian rhythm; chronotherapy is an intervention that helps resynchronize the patient's biological clock with the periodic daily cycle, leading to amelioration of symptoms.

View Article and Find Full Text PDF

Studies of structural connectivity at the synaptic level show that in synaptic connections of the cerebral cortex, the excitatory postsynaptic potential (EPSP) in most synapses exhibits sub-mV values, while a small number of synapses exhibit large EPSPs ( >~1.0 [mV]). This means that the distribution of EPSP fits a log-normal distribution.

View Article and Find Full Text PDF

Electroencephalography (EEG) has long been studied as a potential diagnostic method for Alzheimer's disease (AD). The pathological progression of AD leads to cortical disconnection. These disconnections may manifest as functional connectivity alterations, measured by the degree of synchronization between different brain regions, and alterations in complex behaviors produced by the interaction among wide-spread brain regions.

View Article and Find Full Text PDF

Temporal fluctuation of neural activity in the brain has an important function in optimal information processing. Spontaneous activity is a source of such fluctuation. The distribution of excitatory postsynaptic potentials (EPSPs) between cortical pyramidal neurons can follow a log-normal distribution.

View Article and Find Full Text PDF

Chaotic resonance is a phenomenon that can replace the fluctuation source in stochastic resonance from additive noise to chaos. We previously developed a method to control the chaotic state for suitably generating chaotic resonance by external feedback even when the external adjustment of chaos is difficult, establishing a method named reduced region of orbit (RRO) feedback. However, a feedback signal was utilized only for dividing the merged attractor.

View Article and Find Full Text PDF

Recent advances in nonlinear analytic methods for electroencephalography have clarified the reduced complexity of spatiotemporal dynamics in brain activity observed in Alzheimer's disease (AD). However, there are far fewer studies exploring temporal scale dependent fractal properties in AD, despite the importance of studying the dynamics of brain activity within physiologically relevant frequency ranges. Higuchi's fractal dimension is a widely used index for evaluating fractality in brain activity, but temporal-scale-specific characteristics are lost due to its requirement of averaging over the entire range of temporal scales.

View Article and Find Full Text PDF

Several hybrid spiking neuron models combining continuous spike generation mechanisms and discontinuous resetting processes following spiking have been proposed. The Izhikevich neuron model, for example, can reproduce many spiking patterns. This model clearly possesses various types of bifurcations and routes to chaos under the effect of a state-dependent jump in the resetting process.

View Article and Find Full Text PDF

Chaotic resonance (CR), in which a system responds to a weak signal through the effects of chaotic activities, is a known function of chaos in neural systems. The current belief suggests that chaotic states are induced by different routes to chaos in spiking neural systems. However, few studies have compared the efficiency of signal responses in CR across the different chaotic states in spiking neural systems.

View Article and Find Full Text PDF

It is well known that cerebellar motor control is fine-tuned by the learning process adjusted according to rich error signals from inferior olive (IO) neurons. Schweighofer and colleagues proposed that these signals can be produced by chaotic irregular firing in the IO neuron assembly; such chaotic resonance (CR) was replicated in their computer demonstration of a Hodgkin-Huxley (HH)-type compartment model. In this study, we examined the response of CR to a periodic signal in the IO neuron assembly comprising the Llinás approach IO neuron model.

View Article and Find Full Text PDF

Synaptic plasticity is widely recognized to support adaptable information processing in the brain. Spike-timing-dependent plasticity, one subtype of plasticity, can lead to synchronous spike propagation with temporal spiking coding information. Recently, it was reported that in a noisy environment, like the actual brain, the spike-timing-dependent plasticity may be made efficient by the effect of stochastic resonance.

View Article and Find Full Text PDF

In stochastic resonance (SR), the presence of noise helps a nonlinear system amplify a weak (sub-threshold) signal. Chaotic resonance (CR) is a phenomenon similar to SR but without stochastic noise, which has been observed in neural systems. However, no study to date has investigated and compared the characteristics and performance of the signal responses of a spiking neural system in some chaotic states in CR.

View Article and Find Full Text PDF

Recently, numerous attempts have been made to understand the dynamic behavior of complex brain systems using neural network models. The fluctuations in blood-oxygen-level-dependent (BOLD) brain signals at less than 0.1 Hz have been observed by functional magnetic resonance imaging (fMRI) for subjects in a resting state.

View Article and Find Full Text PDF

Associative memory networks based on quaternionic Hopfield neural network are investigated in this paper. These networks are composed of quaternionic neurons, and input, output, threshold, and connection weights are represented in quaternions, which is a class of hypercomplex number systems. The energy function of the network and the Hebbian rule for embedding patterns are introduced.

View Article and Find Full Text PDF

We introduce a stimulus-response scheme that supports plastic variation of synapse weights in neural networks, and analyze how memory formation evolves under external stimulation. In so doing, chaotic networks and stochastic networks that have very different dynamics are compared. Experimental results suggest that chaotic activity remarkably outperforms stochastic activity in stimulus-response memorization.

View Article and Find Full Text PDF