Publications by authors named "Hartz R"

Article Synopsis
  • Newer HIV-1 maturation inhibitors, like VH3739937 (VH-937), have shown promise as effective antiretroviral treatments in clinical settings.
  • VH-937 features a 4-cyanopyridyl ether design that is a step up from earlier inhibitors, leading to a better antiviral profile and effectiveness against the A364V mutation, a common resistance issue.
  • Due to its improved pharmacokinetic properties, VH-937 has the potential for infrequent dosing, with initial human studies supporting the possibility of once-weekly administration.
View Article and Find Full Text PDF

The HIV-1 maturation inhibitor (MI) VH3739937 (VH-937) inhibits cleavage between capsid and spacer peptide 1 and exhibits an oral half-life in humans compatible with once-weekly dosing. Here, the antiviral properties of VH-937 are described. VH-937 exhibited potent antiviral activity against all HIV-1 laboratory strains, clinical isolates, and recombinant viruses examined, with half-maximal effective concentration (EC) values ≤ 5.

View Article and Find Full Text PDF

Galectin-3 (Gal-3) is a carbohydrate binding protein that has been implicated in the development and progression of fibrotic diseases. Proof-of-principal animal models have demonstrated that inhibition of Gal-3 is a potentially viable pathway for the treatment of fibrosis─with small molecule Gal-3 inhibitors advanced into clinical trials. We hereby report the discovery of novel galactose-based monosaccharide Gal-3 inhibitors comprising 2-methyl-4-phenyl-2,4-dihydro-3-1,2,4-triazole-3-thione (compound ) and 4-phenyl-4-1,2,4-triazole (compound ).

View Article and Find Full Text PDF

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that serves as an important regulator of a broad range of cellular functions. It has been linked to Alzheimer's disease as well as various other diseases, including mood disorders, type 2 diabetes, and cancer. There is considerable evidence indicating that GSK-3β in the central nervous system plays a role in the production of abnormal, hyperphosphorylated, microtubule-associated tau protein found in neurofibrillary tangles associated with Alzheimer's disease.

View Article and Find Full Text PDF

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that regulates numerous cellular processes, including metabolism, proliferation, and cell survival. Due to its multifaceted role, GSK-3 has been implicated in a variety of diseases, including Alzheimer's disease, type 2 diabetes, cancer, and mood disorders. GSK-3β has been linked to the formation of the neurofibrillary tangles associated with Alzheimer's disease that arise from the hyperphosphorylation of tau protein.

View Article and Find Full Text PDF

An investigation of the structure-activity relationships of a series of HIV-1 maturation inhibitors (MIs) based on GSK3640254 () was conducted by incorporating novel C-17 amine substituents to reduce the overall basicity of the resultant analogues. We found that replacement of the distal amine on the C-17 sidechain present in with a tertiary alcohol in combination with either a heterocyclic ring system or a cyclohexyl ring substituted with polar groups provided potent wild-type HIV-1 MIs that also retained excellent potency against a T332S/V362I/prR41G variant, a laboratory strain that served as a surrogate to assess HIV-1 polymorphic virus coverage. Compound exhibited broad-spectrum HIV-1 activity against an expanded panel of clinically relevant Gag polymorphic viruses and had the most desirable overall profile in this series of compounds.

View Article and Find Full Text PDF

GSK3640254 is an HIV-1 maturation inhibitor (MI) that exhibits significantly improved antiviral activity toward a range of clinically relevant polymorphic variants with reduced sensitivity toward the second-generation MI GSK3532795 (BMS-955176). The key structural difference between GSK3640254 and its predecessor is the replacement of the -substituted benzoic acid moiety attached at the C-3 position of the triterpenoid core with a cyclohex-3-ene-1-carboxylic acid substituted with a CHF moiety at the carbon atom α- to the pharmacophoric carboxylic acid. This structural element provided a new vector with which to explore structure-activity relationships (SARs) and led to compounds with improved polymorphic coverage while preserving pharmacokinetic (PK) properties.

View Article and Find Full Text PDF

Adaptor protein 2-associated kinase 1 (AAK1) is a serine/threonine kinase that was identified as a therapeutic target for the potential treatment of neuropathic pain. Inhibition of AAK1 in the central nervous system, particularly within the spinal cord, was found to be the relevant site for achieving an antinociceptive effect. We previously reported that compound is a brain-penetrant, AAK1 inhibitor that showed efficacy in animal models for neuropathic pain.

View Article and Find Full Text PDF
Article Synopsis
  • * Research identified adaptor protein 2-associated kinase 1 (AAK1) as a potential target for neuropathic pain after screening mouse gene knockouts.
  • * A selective AAK1 inhibitor was developed, which showed effectiveness in pain relief during tests on mice and rats, indicating that targeting AAK1 could be a viable strategy for treating neuropathic pain.
View Article and Find Full Text PDF

Galectin-3 is a member of a family of β-galactoside-binding proteins. A substantial body of literature reports that galectin-3 plays important roles in cancer, inflammation, and fibrosis. Small-molecule galectin-3 inhibitors, which are generally lactose or galactose-based derivatives, have the potential to be valuable disease-modifying agents.

View Article and Find Full Text PDF

We report the effects of peer-mediated training as a performance improvement intervention on recording of well-body checks by classroom instructors at a specialized school for children and youth. The instructors were trained as peer mediators and then assumed performance monitoring responsibilities in the classroom. Compared to baseline phases in a withdrawal design, peer-mediation increased recording of well-body checks to near-100% among the instructors.

View Article and Find Full Text PDF

A series of phosphate and ester-based prodrugs of anilinopyrazinone 1 (BMS-665053) containing either a methylene or an (acyloxy)alkoxy linker was prepared and evaluated in rat pharmacokinetic studies with the goal of improving the oral bioavailability of the parent (1). The prodrugs, in general, had improved aqueous solubility and oral bioavailability compared to 1. Prodrug 12, which contains an (acyloxy)alkoxy linker, showed the greatest improvement in the oral bioavailability relative to the parent (1), with a seven-fold increase (from 5% to 36%) in rat pharmacokinetic studies.

View Article and Find Full Text PDF

A series of pyrazinone-based compounds incorporating either carbamate or aryl ether groups was synthesized and evaluated as corticotropin-releasing factor-1 (CRF1) receptor antagonists. Structure-activity relationship studies led to the identification of highly potent CRF1 receptor antagonists 14a (IC50=0.74 nM) and 14b (IC50=1.

View Article and Find Full Text PDF

Before using nanoparticles for therapeutic applications, it is necessary to comprehensively investigate nanoparticle effects, both and . In the associated research article [1] we generate multimodal polymeric nanoparticles functionalized with an antibody, that are designed to deliver an anti-oxidant to astrocytes. Here we provide additional data demonstrating the effects of the nanoparticle preparations on an indicator of oxidative stress in an immortalized Müller cell line .

View Article and Find Full Text PDF

Following neurotrauma, oxidative stress is spread via the astrocytic syncytium and is associated with increased aquaporin 4 (AQP4), inflammatory cell infiltration, loss of neurons and glia and functional deficits. Herein we evaluate multimodal polymeric nanoparticles functionalized with an antibody to an extracellular epitope of AQP4, for targeted delivery of an anti-oxidant as a therapeutic strategy following partial optic nerve transection. Using fluorescence microscopy, spectrophotometry, correlative nanoscale secondary ion mass spectrometry (NanoSIMS) and transmission electron microscopy, in vitro and in vivo, we demonstrate that functionalized nanoparticles are coated with serum proteins such as albumin and enter both macrophages and astrocytes when administered to the site of a partial optic nerve transection in rat.

View Article and Find Full Text PDF

A natural sweetener, Rubusoside (1), subjected to extreme pH and temperature conditions, resulted in the isolation and structural elucidation of one novel rubusoside degradant (7), together with seven known degradants (2-6 and 8-9). ID and 2D NMR spectroscopy (1H, 13C, COSY, HSQC-DEPT, HMBC, and NOESY) and mass spectral data were used to fully characterize the degradant 7.

View Article and Find Full Text PDF

Red/near-infrared light therapy (R/NIR-LT), delivered by laser or light emitting diode (LED), improves functional and morphological outcomes in a range of central nervous system injuries in vivo, possibly by reducing oxidative stress. However, effects of R/NIR-LT on oxidative stress have been shown to vary depending on wavelength or intensity of irradiation. Studies comparing treatment parameters are lacking, due to absence of commercially available devices that deliver multiple wavelengths or intensities, suitable for high through-put in vitro optimization studies.

View Article and Find Full Text PDF

Small molecule modulators of GPR88 activity (agonists, antagonists, or modulators) are of interest as potential agents for the treatment of a variety of psychiatric disorders including schizophrenia. A series of phenylglycinol and phenylamine analogs have been prepared and evaluated for their GPR88 agonist activity and pharmacokinetic (PK) properties.

View Article and Find Full Text PDF

A series of pyrazinones were prepared and evaluated as potential CRF(1)R PET imaging agents. Optimization of their CRF(1)R binding potencies and octanol-phosphate buffer phase distribution coefficients are discussed herein.

View Article and Find Full Text PDF

BMS-763534 is a potent (CRF(1) IC(50) = 0.4 nM) and selective (>1000-fold selectivity vs. all other sites tested) CRF(1) receptor antagonist (pA2 = 9.

View Article and Find Full Text PDF

Based on a favorable balance between CRF-R1 affinity, lipophilicity and metabolic stability, compound 10 was evaluated for potential development as PET radioligand. Compound [(18)F]10 was prepared with high radiochemical purity and showed promising binding properties in rat brain imaging experiments.

View Article and Find Full Text PDF

The objective of this formative research was to assess the acceptability of a micronutrient powder (Sprinkles(®)) and a lipid-based nutrient supplement (Nutributter(®)), and to explore people's willingness to pay for these products in a resource-poor context like Niger. In four sites, 84 focus group discussions among mothers, fathers and grandmothers of children 6-23 months were conducted, as well as 80 key informant interviews of mothers who participated in a home study where their children 6-23 months were given either Sprinkles(®) or Nutributter(®) to use either for a period of 4 weeks, or they were given both products over the 4-week period, i.e.

View Article and Find Full Text PDF

Pyrazinones bearing an N-1-alkyl chain with a chiral center have been reported as potent antagonists of the corticotropin-releasing factor-1 receptor (CRF1R). Separation of individual enantiomers for preclinical testing was an important aspect of lead optimization. To evaluate the applicability and efficiency of supercritical fluid chromatography (SFC) for enantiomeric resolution of this class of compounds, enantiomeric pairs of eight pyrazinones with different structural characteristics were tested under an array of SFC conditions.

View Article and Find Full Text PDF

A series of N(3)-pyridylpyrazinones was investigated as corticotropin-releasing factor-1 receptor antagonists. It was observed that the binding affinity of analogues containing a pyridyl group was influenced not only by the substitution pattern on the pyridyl group, but also by the pK(a) of the pyridyl nitrogen. Analogues containing a novel 6-(difluoromethoxy)-2,5-dimethylpyridin-3-amine group were among the most potent N(3)-pyridylpyrazinones synthesized.

View Article and Find Full Text PDF

Detailed metabolic characterization of 8, an earlier lead pyrazinone-based corticotropin-releasing factor-1 (CRF(1)) receptor antagonist, revealed that this compound formed significant levels of reactive metabolites, as measured by in vivo and in vitro biotransformation studies. This was of particular concern due to the body of evidence suggesting that reactive metabolites may be involved in idiosyncratic drug reactions. Further optimization of the structure-activity relationships and in vivo properties of pyrazinone-based CRF(1) receptor antagonists and studies to assess the formation of reactive metabolites led to the discovery of 19e, a high affinity CRF(1) receptor antagonist (IC(50) = 0.

View Article and Find Full Text PDF