The phosphotyrosine interacting domain-containing protein 1 (PID1) serves as a cytosolic adaptor protein of the LDL receptor-related protein 1 (LRP1). By regulating its intracellular trafficking, PID1 controls the hepatic, LRP1-dependent clearance of pro-atherogenic lipoproteins. In adipose and muscle tissues, LRP1 is present in endosomal storage vesicles containing the insulin-responsive glucose transporter 4 (GLUT4).
View Article and Find Full Text PDFObjective: Insulin resistance is associated with impaired receptor dependent hepatic uptake of triglyceride-rich lipoproteins (TRL), promoting hypertriglyceridemia and atherosclerosis. Next to low-density lipoprotein (LDL) receptor (LDLR) and syndecan-1, the LDLR-related protein 1 (LRP1) stimulated by insulin action contributes to the rapid clearance of TRL in the postprandial state. Here, we investigated the hypothesis that the adaptor protein phosphotyrosine interacting domain-containing protein 1 (PID1) regulates LRP1 function, thereby controlling hepatic endocytosis of postprandial lipoproteins.
View Article and Find Full Text PDFIn a search for sweet taste receptor interacting proteins, we have identified the calcium- and integrin-binding protein 1 (CIB1) as specific binding partner of the intracellular carboxyterminal domain of the rat sweet taste receptor subunit Tas1r2. In heterologous human embryonic kidney 293 (HEK293) cells, the G protein chimeras Galpha(16gust44) and Galpha(15i3) link the sweet taste receptor dimer TAS1R2/TAS1R3 to an inositol 1,4,5-trisphosphate (InsP3)-dependent Ca2+ release pathway. To demonstrate the influence of CIB1 on the cytosolic Ca2+ concentration, we used sweet and umami compounds as well as other InsP3-generating ligands in FURA-2-based Ca2+ assays in wild-type HEK293 cells and HEK293 cells expressing functional human sweet and umami taste receptor dimers.
View Article and Find Full Text PDFGPRC6A is a novel member of family C of G protein-coupled receptors with so far elusive biological function. GPRC6A has been described in human and mouse as a promiscuous l-alpha-amino acid receptor. We now report the cloning, expression analysis and, functional characterization of the rat orthologue of GPRC6A.
View Article and Find Full Text PDFHealing of skin wounds in mammals involves partial reconstruction of the dermis and coverage of the injured site by keratinocytes. The latter process is achieved by extensive migration and hyperproliferation of keratinocytes at the wound rim. Because the p53 protein family member p63 is expressed in human hyperproliferative epidermis, this study determined whether enhanced keratinocyte proliferation correlates with the expression of p63.
View Article and Find Full Text PDFThe calcium-liberating second messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is converted to inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) by Ins(1,4,5)P3 3-kinases (IP3Ks) that add a fourth phosphate group to the 3-position of the inositol ring. Two isoforms of IP3Ks (named A and B) from different vertebrate species have been well studied. Recently the cloning and examination of a human full-length cDNA encoding a novel isoform, termed human IP3K-C (HsIP3K-C), has been reported.
View Article and Find Full Text PDFThe p53 tumor suppressor acts as a transcription factor and has a central function in controlling apoptosis. With p63 and p73 two genes coding for proteins homologous to p53 have been identified. We describe the properties of seven human p63 and p73 proteins as transcriptional activators of p21WAF1/CIP1 expression and apoptotic inducers in direct comparison to p53 in the same assay systems employing DLD-1-tet-off colon cells.
View Article and Find Full Text PDFRecently, the p53 homolog p63 has been implicated in sustaining the epidermal stem cell population. The p63 gene encodes six major products with transactivating or dominant-negative properties. The expression pattern of these isoforms in keratinocytes was investigated here.
View Article and Find Full Text PDF