Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs) (1-3). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs.
View Article and Find Full Text PDFK^{+}K^{-} pairs may be produced in photonuclear collisions, either from the decays of photoproduced ϕ(1020) mesons or directly as nonresonant K^{+}K^{-} pairs. Measurements of K^{+}K^{-} photoproduction probe the couplings between the ϕ(1020) and charged kaons with photons and nuclear targets. The kaon-proton scattering occurs at energies far above those available elsewhere.
View Article and Find Full Text PDFIn recent decades, the development of new drugs has become increasingly expensive and inefficient, and the molecular mechanisms of most pharmaceuticals remain poorly understood. In response, computational systems and network medicine tools have emerged to identify potential drug repurposing candidates. However, these tools often require complex installation and lack intuitive visual network mining capabilities.
View Article and Find Full Text PDFThis study investigates the adhesion properties of polycarbonate (PC) and liquid silicone rubbers (LSR) through surface activation using ultraviolet C (UVC) radiation. While self-adhesive LSRs adhere easily to certain thermoplastic composites such as polybutylene terephthalate (PBT) and polyamides (PAs), bonding to PC typically requires surface treatment due to the lack of compatible functional groups. Previous methods like plasma or flame treatment have been effective, but the use of UVC radiation for surface activation remains unexplored.
View Article and Find Full Text PDFPatients, life science industry and regulatory authorities are united in their goal to reduce the disease burden of patients by closing remaining unmet needs. Patients have, however, not always been systematically and consistently involved in the drug development process. Recognizing this gap, regulatory bodies worldwide have initiated patient-focused drug development (PFDD) initiatives to foster a more systematic involvement of patients in the drug development process and to ensure that outcomes measured in clinical trials are truly relevant to patients and represent significant improvements to their quality of life.
View Article and Find Full Text PDFBackground: Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease affecting various organs with a wide range of clinical manifestations. Cutaneous lupus erythematosus (CLE) can manifest as a feature of SLE or an independent skin ailment. Health-related quality of life (HRQoL) is frequently compromised in individuals living with lupus.
View Article and Find Full Text PDFMost heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs.
View Article and Find Full Text PDFMotivation: The reconstruction of small key regulatory networks that explain the differences in the development of cell (sub)types from single-cell RNA sequencing is a yet unresolved computational problem.
Results: To this end, we have developed SCANet, an all-in-one package for single-cell profiling that covers the whole differential mechanotyping workflow, from inference of trait/cell-type-specific gene co-expression modules, driver gene detection, and transcriptional gene regulatory network reconstruction to mechanistic drug repurposing candidate prediction. To illustrate the power of SCANet, we examined data from two studies.
The multicomponent injection molding of liquid silicone rubbers (LSR) with thermoplastics, such as polybutylene terephthalate (PBT) or polyamide (PA), is a state-of-the-art technique and is used in the manufacturing process for many components in the automotive industry and in the field of sanitary engineering. Standard thermoplastics, such as acrylonitrile butadiene styrene (ABS), cannot be bonded with silicone rubbers in injection molding because of their low heat deflection temperature. In this study, we investigated ABS grades approved for medical applications to show how dynamic mold heating and various pretreatment methods for thermoplastic surfaces can be used to produce ABS-LSR test specimens.
View Article and Find Full Text PDFThe influence of thermomechanical stress on the conductivity of indium tin oxide (ITO)-coated polycarbonate (PC) films was investigated. PC is the industry's standard material for window panes. ITO coatings on polyethylene terephthalate (PET) films are the main commercially available option; as such, most investigations refer to this combination.
View Article and Find Full Text PDFElectrochromic (EC) windows on glass for thermal and glare protection in buildings, often referred to as smart (dimmable) windows, are commercially available, along with rearview mirrors or windows in aircraft cabins. Plastic-based applications, such as ski goggles, visors and car windows, that require lightweight, three-dimensional (3D) geometry and high-throughput manufacturing are still under development. To produce such EC devices (ECDs), a flexible EC film could be integrated into a back injection molding process, where the films are processed into compact 3D geometries in a single automized step at a low processing time.
View Article and Find Full Text PDFA recently described flexible polyurethane electrolyte was artificially weathered at 25/50 °C and 50% r.h. in air and at 25 °C in a dry nitrogen atmosphere, each with and without UV irradiation.
View Article and Find Full Text PDFPurpose: Radiology global health opportunities are expanding as more hospitals in low- and middle-income countries utilize CT. This creates opportunities for global health program building, education, service, and research. This study determines the diagnostic yield and variety of abdominopelvic CT diagnoses for abdominal pain in a US academic medical center (UW) compared to a rural Kenyan teaching hospital (Tenwek).
View Article and Find Full Text PDFPurpose: To compare electromagnetic navigation (EMN) with computed tomography (CT) fluoroscopy for guiding percutaneous biopsies in the abdomen and pelvis.
Materials And Methods: A retrospective matched-cohort design was used to compare biopsies in the abdomen and pelvis performed with EMN (consecutive cases, n = 50; CT-Navigation; Imactis, Saint-Martin-d'Hères, France) with those performed with CT fluoroscopy (n = 100). Cases were matched 1:2 (EMN:CT fluoroscopy) for target organ and lesion size (±10 mm).
Carbon fiber reinforced plastics (CFRP) bear a high potential in terms of electrical conductivity and its potential applications. A locally resolved electrical measurement method for these anisotropic materials is a key prerequisite for understanding the structural and manufacturing process-related interrelationships. The aim of this paper is to develop a measurement method that allows this to be achieved and also to investigate areas of overmolded metal contact pins in detail.
View Article and Find Full Text PDFFor the application in flexible electrochromic devices (ECDs) on plastic substrates, a new polyurethane-based gel electrolyte was manufactured. In this context, the curing behavior and the influence of the proportion of solvent and salt on the ion conductivity as well as the optical and mechanical properties were investigated. Furthermore, the stoichiometric ratio of the polyurethane matrix was varied to influence the ion conductivity.
View Article and Find Full Text PDFCancer is a heterogeneous disease characterized by unregulated cell growth and promoted by mutations in cancer driver genes some of which encode suitable drug targets. Since the distinct set of cancer driver genes can vary between and within cancer types, evidence-based selection of drugs is crucial for targeted therapy following the precision medicine paradigm. However, many putative cancer driver genes can not be targeted directly, suggesting an indirect approach that considers alternative functionally related targets in the gene interaction network.
View Article and Find Full Text PDFPercutaneous ultrasound-guided biopsies have become the standard of practice for tissue diagnosis in the abdomen and pelvis for many sites including liver, kidney, abdominal wall, and peripheral nodal stations. Additional targets may appear difficult or impossible to safely biopsy by ultrasound due to interposed bowel loops/vasculature, deep positioning, association with the bowel, or concern for poor visibility; however, by optimizing technique, it is often possible to safely and efficiently use real-time ultrasound guidance for sampling targets that normally would be considered only appropriate for CT guided or surgical/endoscopic biopsy.
View Article and Find Full Text PDFmicroRNAs (miRNAs) are post-transcriptional regulators involved in many biological processes and human diseases, including cancer. The majority of transcripts compete over a limited pool of miRNAs, giving rise to a complex network of competing endogenous RNA (ceRNA) interactions. Currently, gene-regulatory networks focus mostly on transcription factor-mediated regulation, and dedicated efforts for charting ceRNA regulatory networks are scarce.
View Article and Find Full Text PDF