Chinese hamster ovary (CHO) cells are known not to express appreciable levels of the sialic acid residue N-glycolylneuraminic acid (NGNA) on monoclonal antibodies. However, we actually have identified a recombinant CHO cell line expressing an IgG with unusually high levels of NGNA sialylation (>30%). Comprehensive multi-OMICs based experimental analyses unraveled the root cause of this atypical sialylation: (1) expression of the cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene was spontaneously switched on, (2) CMAH mRNA showed an anti-correlated expression to the newly discovered Cricetulus griseus (cgr) specific microRNA cgr-miR-111 and exhibits two putative miR-111 binding sites, (3) miR-111 expression depends on the transcription of its host gene SDK1, and (4) a single point mutation within the promoter region of the sidekick cell adhesion molecule 1 (SDK1) gene generated a binding site for the transcriptional repressor histone H4 transcription factor HINF-P.
View Article and Find Full Text PDFStreptomyces spp. are a rich source for natural products with recognized industrial value, explaining the high interest to improve and streamline the performance of in these microbes. Here, we studied the production of pamamycins, macrodiolide homologs with a high activity against multiresistant pathogenic microbes, using recombinant Streptomyces albus J1074/R2.
View Article and Find Full Text PDFThis study aimed to uncover microbial dynamics and transcriptional adaptations during mesophilic AD of maize silage and slurry. While one digester performed under optimal conditions, the investigations also evaluated the microbiome during a temperature drop mediated process failure accompanied by acidification and how it contributed to a process recovery. Composition and pathway activities were analyzed by whole genome shotgun (WGS) and metatranscriptome sequencing, respectively.
View Article and Find Full Text PDFBackground: Small non-coding RNAs (sRNAs) have attracted attention as a new class of gene regulators in both eukaryotes and bacteria. Genome-wide screening methods have been successfully applied in Gram-negative bacteria to identify sRNA regulators. Many sRNAs are well characterized, including their target mRNAs and mode of action.
View Article and Find Full Text PDFSmall RNA molecules (sRNAs) are key mediators of virulence and stress inducible gene expressions in some pathogens. In this work we identify sRNAs in the gram positive opportunistic pathogen Enterococcus faecalis. We characterized 11 sRNAs by tiling microarray analysis, 5' and 3' RACE-PCR, and Northern blot analysis.
View Article and Find Full Text PDFIn the recent years, the number of drug- and multi-drug-resistant microbial strains has increased rapidly. Therefore, the need to identify innovative approaches for development of novel anti-infectives and new therapeutic targets is of high priority in global health care. The detection of small RNAs (sRNAs) in bacteria has attracted considerable attention as an emerging class of new gene expression regulators.
View Article and Find Full Text PDFThermus thermophilus HB27 is an extremely thermophilic, halotolerant bacterium, which was originally isolated from a natural thermal environment in Japan. This organism has considerable biotechnological potential; many thermostable proteins isolated from members of the genus Thermus are indispensable in research and in industrial applications. We present here the complete genome sequence of T.
View Article and Find Full Text PDFN1-methyladenosine (m1A) is found at position 58 in the T-loop of many tRNAs. In yeast, the formation of this modified nucleoside is catalyzed by the essential tRNA (m1A58) methyltransferase, a tetrameric enzyme that is composed of two types of subunits (Gcd14p and Gcd10p). In this report we describe the cloning, expression and characterization of a Gcd14p homolog from the hyperthermophilic bacterium Thermus thermophilus.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
March 2003
RecFOR proteins are important for DNA repair by homologous recombination in bacteria. The RecO protein from Thermus thermophilus was cloned and purified, and its binding to oligonucleotides was characterized. The protein was crystallized alone and in complex with a 14-mer oligonucleotide.
View Article and Find Full Text PDFIntraclonal genome diversity of Pseudomonas aeruginosa was studied in one of the most diverse mosaic regions of the P. aeruginosa chromosome. The ca.
View Article and Find Full Text PDFRibosomal protein S1 has been identified in Thermus thermophilus ribosomes. The gene of ribosomal protein S1 from Thermus thermophilus has been cloned and overexpressed in Escherichia coli. A procedure for purification of the protein has been developed.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases are well known for their remarkable precision in substrate selection during aminoacyl-tRNA formation. Some synthetases enhance the accuracy of this process by editing mechanisms that lead to hydrolysis of incorrectly activated and/or charged amino acids. Prolyl-tRNA synthetases (ProRSs) can be divided into two structurally divergent groups, archaeal-type and bacterial-type enzymes.
View Article and Find Full Text PDFThermophilic organisms must be capable of accurate translation at temperatures in which the individual components of the translation machinery and also specific amino acids are particularly sensitive. Thermus thermophilus is a good model organism for studies of thermophilic translation because many of the components in this process have undergone structural and biochemical characterization. We have focused on the pathways of aminoacyl-tRNA synthesis for glutamine, asparagine, proline, and cysteine.
View Article and Find Full Text PDFThermus thermophilus HB27, an extremely thermophilic bacterium, exhibits high competence for natural transformation. To identify genes of the natural transformation machinery of T. thermophilus HB27, we performed homology searches in the partially completed T.
View Article and Find Full Text PDFAll known multisubunit RNA polymerases possess the ability to endonucleolytically degrade the nascent RNA transcript. To gain further insight into the conformational changes that govern transcript cleavage, we have examined the effects of certain anions on the intrinsic transcript cleavage activity of Thermus thermophilus RNA polymerase. Our results indicate that the conformational transitions involved in transcript cleavage, and therefore backtracking, are anion-dependent.
View Article and Find Full Text PDFThe mesophile Acinetobacter sp. strain BD413 and the extreme thermophile Thermus thermophilus HB27 display high frequencies of natural transformation. In this study we identified and characterized a novel competence gene in Acinetobacter sp.
View Article and Find Full Text PDFThe sfa(I) determinant encoding the S-fimbrial adhesin of uropathogenic Escherichia coli strains was found to be located on a pathogenicity island of uropathogenic E. coli strain 536. This pathogenicity island, designated PAI III(536), is located at 5.
View Article and Find Full Text PDFThe small ribosomal subunit is responsible for the decoding of genetic information and plays a key role in the initiation of protein synthesis. We analyzed by X-ray crystallography the structures of three different complexes of the small ribosomal subunit of Thermus thermophilus with the A-site inhibitor tetracycline, the universal initiation inhibitor edeine and the C-terminal domain of the translation initiation factor IF3. The crystal structure analysis of the complex with tetracycline revealed the functionally important site responsible for the blockage of the A-site.
View Article and Find Full Text PDFInitiation of translation at the correct position on messenger RNA is essential for accurate protein synthesis. In prokaryotes, this process requires three initiation factors: IF1, IF2, and IF3. Here we report the crystal structure of a complex of IF1 and the 30S ribosomal subunit.
View Article and Find Full Text PDFEnrichment cultures of microbial consortia enable the diverse metabolic and catabolic activities of these populations to be studied on a molecular level and to be explored as potential sources for biotechnology processes. We have used a combined approach of enrichment culture and direct cloning to construct cosmid libraries with large (>30-kb) inserts from microbial consortia. Enrichment cultures were inoculated with samples from five environments, and high amounts of avidin were added to the cultures to favor growth of biotin-producing microbes.
View Article and Find Full Text PDFGenetic information encoded in messenger RNA is translated into protein by the ribosome, which is a large nucleoprotein complex comprising two subunits, denoted 30S and 50S in bacteria. Here we report the crystal structure of the 30S subunit from Thermus thermophilus, refined to 3 A resolution. The final atomic model rationalizes over four decades of biochemical data on the ribosome, and provides a wealth of information about RNA and protein structure, protein-RNA interactions and ribosome assembly.
View Article and Find Full Text PDFBackground: Immunoglobulin domains owe a crucial fraction of their conformational stability to an invariant central disulfide bridge, the closure of which requires oxidation. Under the reducing conditions prevailing in cell cytoplasm, accumulation of soluble immunoglobulin is prohibited by its inability to acquire and maintain the native conformation. Previously, we have shown that disulfide-free immunoglobulins can be produced in Escherichia coli and purified from cytoplasmic extracts.
View Article and Find Full Text PDF