Publications by authors named "Hartmut Wiggers"

Since solid electrolytes have a broad electrochemical stability window, are exceptionally electrochemically stable against Li metal, and function as a physical separator to prevent dendrite growth, they are at the forefront of alternate possibilities, further increasing the stability and energy density of Li-ion batteries. NASICON-type electrolytes are a promising candidate due to their negligible moisture sensitivity, which results in outstanding stability and a lower probability of LiCO passivity under the ambient atmosphere. However, one of the most promising representatives, LiYZr(PO) (LYZP), has multiple stable phases with significant variation in their corresponding Li-ion conductivity.

View Article and Find Full Text PDF

In sodium-ion batteries (SIBs), TiOor sodium titanates are discussed as cost-effective anode material. The use of ultrafine TiOparticles overcomes the effect of intrinsically low electronic and ionic conductivity that otherwise limits the electrochemical performance and thus its Na-ion storage capacity. Especially, TiOnanoparticles integrated in a highly conductive, large surface-area, and stable graphene matrix can achieve an exceptional electrochemical rate performance, durability, and increase in capacity.

View Article and Find Full Text PDF

The product properties of mixed oxide nanoparticles generated via spray-flame synthesis depend on an intricate interplay of solvent and precursor chemistries in the processed solution. The effect of two different sets of metal precursors, acetates and nitrates, dissolved in a mixture of ethanol (35 Vol.%) and 2-ethylhexanoic acid (2-EHA, 65 Vol.

View Article and Find Full Text PDF

The stability of graphene structure in sulfur-doped graphene catalyst is demonstrated to be a key aspect during the ozonation process. Enhancing the stability of the sulfur-doped graphene structure is therefore important to improve its catalytic activity during the ozonation process. However, this has remained a challenge so far.

View Article and Find Full Text PDF
Article Synopsis
  • Polymer electrolytes can enhance rechargeable lithium metal batteries but may face challenges like mechanical rigidity and uneven ion transport.
  • This study examines a hybrid electrolyte combining single-ion conducting polymers with PVdF-HFP and silane-functionalized LATP particles, which creates a stable interface that supports long-lasting lithium deposition.
  • The hybrid electrolyte demonstrated excellent electrochemical performance, achieving impressive capacity retention over 300 cycles in lithium cells, with enhanced stability achieved through a thin coating on the cathode.
View Article and Find Full Text PDF

A spray-flame reaction step followed by a short 1-h sintering step under O atmosphere was used to synthesize nanocrystalline cubic Al-doped LiLaZrO (LLZO). The as-synthesized nanoparticles from spray-flame synthesis consisted of the crystalline LaZrO (LZO) pyrochlore phase while Li was present on the nanoparticles' surface as amorphous carbonate. However, a short annealing step was sufficient to obtain phase pure cubic LLZO.

View Article and Find Full Text PDF

A thorough understanding of complex interactions within particulate systems is a key for knowledge-based formulations. Hansen solubility parameters (HSP) are widely used to assess the compatibility of the dispersed phase with the continuous phase. At present, the determination of HSP is often based on a liquid ranking list obtained by evaluating a pertinent dispersion parameter using only one pre-selected characterization method.

View Article and Find Full Text PDF

Noble-metal-free perovskite oxides are promising and well-known catalysts for high-temperature gas-phase oxidation reactions, but their application in selective oxidation reactions in the liquid phase has rarely been studied. We report the liquid-phase oxidation of cinnamyl alcohol over spray-flame synthesized LaCo Fe O perovskite nanoparticles with tert-butyl hydroperoxide (TBHP) as the oxidizing agent under mild reaction conditions. The catalysts were characterized by XRD, BET, EDS and elemental analysis.

View Article and Find Full Text PDF

Silicon nanoparticles (SiNPs), which have a special place in material science due to their strong luminescent property and wide applicability in various physicochemical arenas, such as solar cells and LEDs, were synthesised by a microwave plasma-assisted process using an argon-silane mixture. Several characterization tools were applied to check the crystallinity (XRD) and morphological (FESEM, TEM, ∼20 ± 2 nm size) and topographical (AFM, ∼20 nm) details of the NPs. The high-purity SiNPs were applied on myoblast cancer cells to investigate the reactivity of the NPs at different doses (200, 1000 and 2000 ng mL) for different incubation periods (24 h, 48 h & 72 h).

View Article and Find Full Text PDF

The exploitation of semiconductor nanocrystal (NC) films in novel electronic and optoelectronic applications requires a better understanding of charge transport in these systems. Here, we develop a model of charge transport in NC films, based on a generalization of the concept of transport energy level ET to nanocrystal assemblies, which considers both intra- and inter-NC charge transfer processes. We conclude that the role played by each of these processes can be probed from temperature-dependent measurements of charge carrier density n and mobility μ in the same films.

View Article and Find Full Text PDF

Room-temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize three-dimensional (3D) titania-graphene hybrid via electrostatic-interaction-induced self-assembly.

View Article and Find Full Text PDF

When designing nano-Si electrodes for lithium-ion batteries, the detrimental effect of the c-LiSi phase formed upon full lithiation is often a concern. In this study, Si nanoparticles with controlled particle sizes and morphology were synthesized, and parasitic reactions of the metastable c-LiSi phase with the nonaqueous electrolyte was investigated. The use of smaller Si nanoparticles (∼60 nm) and the addition of fluoroethylene carbonate additive played decisive roles in the parasitic reactions such that the c-LiSi phase could disappear at the end of lithiation.

View Article and Find Full Text PDF

A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering.

View Article and Find Full Text PDF

Nanocrystalline titania was synthesized via liquid-fed spray-flame synthesis in a hermetically closed system at various pressures. Titanium tetraisopropoxide dissolved in isopropanol was used as precursor. The size, crystal structure, degree of agglomeration, morphology and the band gap of the as-prepared particles were investigated ex situ by nitrogen adsorption, transmission electron microscopy, X-ray diffraction, and UV-VIS absorption spectroscopy.

View Article and Find Full Text PDF

Silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K(-1) m(-1) at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon.

View Article and Find Full Text PDF

The future exploitation of the exceptional properties of nanocrystal (NC) thin films deposited from liquid dispersions of nanoparticles relies upon our ability to produce films with improved electrical properties by simple and inexpensive means. Here, we demonstrate that the electronic conduction of solution-processed NC films can be strongly enhanced without the need of postdeposition treatments, via specific molecules adsorbed at the surfaces of adjacent NCs. This effect is demonstrated for Si NC films doped with the strong molecular oxidizing agent tetrafluoro-tetracyanoquinodimethane (F4-TCNQ).

View Article and Find Full Text PDF

This paper describes the fabrication of highly monodisperse TiO(2) nanoparticle aggregates (NPAs) by controlled aggregation of nanoparticles in a water-in-oil emulsion. Equally sized drops containing a titanium dioxide nanoparticle suspension are produced in a T-channel device. This procedure has a high tuning potential.

View Article and Find Full Text PDF

For the preparation of printed devices based on ZnO nanoparticles (ZnO NPs), stable colloidal dispersions of these materials are highly desirable. ZnO NPs have been synthesized by Chemical Vapor Synthesis. The particles have a spherical shape with a narrow size distribution.

View Article and Find Full Text PDF

The specific properties of nanoscale particles, large surface-to-mass ratios and highly reactive surfaces, have increased their commercial application in many fields. However, the same properties are also important for the interaction and bioaccumulation of the nonbiodegradable nanoscale particles in a biological system and are a cause for concern. Hematite (α-Fe₂O₃), being a mineral form of Fe(III) oxide, is one of the most used iron oxides besides magnetite.

View Article and Find Full Text PDF

We present an enhanced method to form stable dispersions of medium-sized silicon nanoparticles for solar cell applications by thermally induced grafting of acrylic acid to the nanoparticle surface. In order to confirm their covalent attachment on the silicon nanoparticles and to assess the quality of the functionalization, X-ray photoelectron spectroscopy and diffuse reflectance infrared Fourier spectroscopy measurements were carried out. The stability of the dispersion was elucidated by dynamic light scattering and Zeta-potential measurements, showing no sign of degradation for months.

View Article and Find Full Text PDF

The formation of stable colloidal dispersions of silicon nanoparticles (Si-NPs) is essential for the manufacturing of silicon based electronic and optoelectronic devices using cost-effective printing technologies. However, the development of Si-NPs based printable electronics has so far been hampered by the lack of long-term stability, low production rate and poor optical properties of Si-NPs ink. In this paper, we synthesized Si-NPs in a gas phase microwave plasma reactor with very high production rate, which were later treated to form a stable colloidal dispersion.

View Article and Find Full Text PDF

In this paper, we studied the behavior of silicon quantum dots (Si-QDs) after etching and surface oxidation by means of photoluminescence (PL) measurements, Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance spectroscopy (EPR). We observed that etching of red luminescing Si-QDs with HF acid drastically reduces the concentration of defects and significantly enhances their PL intensity together with a small shift in the emission spectrum. Additionally, we observed the emergence of blue luminescence from Si-QDs during the re-oxidation of freshly etched particles.

View Article and Find Full Text PDF

Electroluminescence from as-prepared silicon nanoparticles, fabricated by gas phase synthesis, is demonstrated. The particles are embedded between an n-doped GaAs substrate and a semitransparent indium tin oxide top electrode. The total electroluminescence intensity of the Si nanoparticles is more than a factor of three higher than the corresponding signal from the epitaxial III-V semiconductor.

View Article and Find Full Text PDF

Aluminum-doped zinc oxide nanoparticles have been prepared by chemical vapor synthesis, which facilitates the incorporation of a higher percentage of dopant atoms, far above the thermodynamic solubility limit of aluminum. The electrical properties of aluminum-doped and undoped zinc oxide nanoparticles were investigated by impedance spectroscopy. The impedance is measured under hydrogen and synthetic air between 323 and 673 K.

View Article and Find Full Text PDF