The investigation of strong coupling between light and matter is an important field of research. Its significance arises not only from the emergence of a plethora of intriguing chemical and physical phenomena, often novel and unexpected, but also from its provision of important tool sets for the design of core components for novel chemical, electronic, and photonic devices such as quantum computers, lasers, amplifiers, modulators, sensors and more. Strong coupling has been demonstrated for various material systems and spectral regimes, each exhibiting unique features and applications.
View Article and Find Full Text PDFGraphene has recently been shown to exhibit ultrafast conductivity modulation due to periodic carrier heating by either terahertz (THz) waves, leading to self-induced harmonic generation, or the intensity beat note of two-color optical radiation. We exploit the latter to realize an optoelectronic photomixer for coherent, continuous-wave THz detection, based on a photoconductive antenna with multilayer CVD-grown graphene in the gap. While for biased THz emitters the dark current would pose a serious detriment for performance, we show that this is not the case for bias-free THz detection and demonstrate detection up to frequencies of at least 700 GHz at room temperature, even without optimized tuning of the doping.
View Article and Find Full Text PDFFrequency-selective or even frequency-tunable terahertz (THz) photodevices are critical components for many technological applications that require nanoscale manipulation, control, and confinement of light. Within this context, gate-tunable phototransistors based on plasmonic resonances are often regarded as the most promising devices for the frequency-selective detection of THz radiation. The exploitation of constructive interference of plasma waves in such detectors promises not only frequency selectivity but also a pronounced sensitivity enhancement at target frequencies.
View Article and Find Full Text PDFFourier imaging is an indirect imaging method which records the diffraction pattern of the object scene coherently in the focal plane of the imaging system and reconstructs the image using computational resources. The spatial resolution, which can be reached, depends on one hand on the wavelength of the radiation, but also on the capability to measure - in the focal plane - Fourier components with high spatial wave-vectors. This leads to a conflicting situation at THz frequencies, because choosing a shorter wavelength for better resolution usually comes at the cost of less radiation power, concomitant with a loss of dynamic range, which limits the detection of higher Fourier components.
View Article and Find Full Text PDFDark modes represent a class of forbidden transitions or transitions with weak dipole moments between energy states. Due to their low transition probability, it is difficult to realize their interaction with light, let alone achieve the strong interaction of the modes with the photons in a cavity. However, by mutual coupling with a bright mode, the strong interaction of dark modes with photons is possible.
View Article and Find Full Text PDFWe demonstrate the use of spectrograms of the field-induced second-harmonic (FISH) signal generated in ambient air, to reconstruct the absolute temporal electric field of ultra-broadband terahertz-infrared (THz-IR) pulses with bandwidths exceeding 100 THz. The approach is applicable even with relatively long (150-femtosecond) optical detection pulses, where the relative intensity and phase can be extracted from the moments of the spectrogram, as demonstrated by transmission spectroscopy of very thin samples. Auxiliary EFISH/ABCD measurements are used to provide the absolute field and phase calibration, respectively.
View Article and Find Full Text PDFWe present the characterization of a Zero-bias Schottky diode-based Terahertz (THz) detector up to 5.56 THz. The detector was operated with both a table-top system until 1.
View Article and Find Full Text PDFWe investigate the coherent coupling of metamaterial resonators with hydrogen-like boron acceptors in Si at cryogenic temperatures. When the resonance frequency of the metamaterial, chosen to be in the range 7-9 THz, superimposes the transition frequency from the ground state of the acceptor to an excited state, Rabi splitting as large as 0.4 THz is observed.
View Article and Find Full Text PDFWhen a metamaterial (MM) is embedded in a one-dimensional photonic crystal (PC) cavity, the ultra-strong coupling between the MM plasmons and the photons in the PC cavity gives rise to two new polariton modes with high quality factor. Here, we investigate by simulations whether such a strongly coupled system working in the terahertz (THz) frequency range has the potential to be a better sensor than a MM (or a PC cavity) alone. Somewhat surprisingly, one finds that the shift of the resonance frequency induced by an analyte applied to the MM is smaller in the case of the dual resonator (MM and cavity) than that obtained with the MM alone.
View Article and Find Full Text PDFIn this roadmap article, we have focused on the most recent advances in terahertz (THz) imaging with particular attention paid to the optimization and miniaturization of the THz imaging systems. Such systems entail enhanced functionality, reduced power consumption, and increased convenience, thus being geared toward the implementation of THz imaging systems in real operational conditions. The article will touch upon the advanced solid-state-based THz imaging systems, including room temperature THz sensors and arrays, as well as their on-chip integration with diffractive THz optical components.
View Article and Find Full Text PDFWe report the successful implementation of antenna-coupled terahertz field-effect transistors (TeraFETs) as homodyne detectors in a scattering-type scanning near-field optical microscope (s-SNOM) operating with radiation at 246.5 GHz. The devices were fabricated in Si CMOS foundry technology with two different technologies, a 90 nm process, which provides a better device performance, and a less expensive 180 nm one.
View Article and Find Full Text PDFWe explore the tilted-pulse-front excitation technique to control the superradiant emission of terahertz (THz) pulses from large-area photonconductive semiconductor switches. Two cases are studied. First, a photoconductive antenna emitting into free space, where the propagation direction of the optically generated THz beam is controlled by the choice of the tilt angle of the pump pulse front.
View Article and Find Full Text PDFThis work presents, to our knowledge, the first completely passive imaging with human-body-emitted radiation in the lower THz frequency range using a broadband uncooled detector. The sensor consists of a Si CMOS field-effect transistor with an integrated log-spiral THz antenna. This THz sensor was measured to exhibit a rather flat responsivity over the 0.
View Article and Find Full Text PDFPlasma waves play an important role in many solid-state phenomena and devices. They also become significant in electronic device structures as the operation frequencies of these devices increase. A prominent example is field-effect transistors (FETs), that witness increased attention for application as rectifying detectors and mixers of electromagnetic waves at gigahertz and terahertz frequencies, where they exhibit very good sensitivity even high above the cut-off frequency defined by the carrier transit time.
View Article and Find Full Text PDFSurface plasmon polaritons on (silver) nanowires are promising components for future photonic technologies. Here, we study near-field patterns on silver nanowires with a scattering-type scanning near-field optical microscope that enables the direct mapping of surface waves. We analyze the spatial pattern of the plasmon signatures for different excitation geometries and polarization and observe a plasmon wave pattern that is canted relative to the nanowire axis, which we show is due to a superposition of two different plasmon modes, as supported by electromagnetic simulations including the influence of the substrate.
View Article and Find Full Text PDFLight-matter interaction in the strong coupling regime is of profound interest for fundamental quantum optics, information processing and the realization of ultrahigh-resolution sensors. Here, we report a new way to realize strong light-matter interaction, by coupling metamaterial plasmonic "quasi-particles" with photons in a photonic cavity, in the terahertz frequency range. The resultant cavity polaritons exhibit a splitting which can reach the ultra-strong coupling regime, even with the comparatively low density of quasi-particles, and inherit the high Q-factor of the cavity despite the relatively broad resonances of the Swiss-cross and split-ring-resonator metamaterials used.
View Article and Find Full Text PDFLight-matter interactions with two-dimensional materials gained significant attention in recent years, leading to the reporting of weak and strong coupling regimes and effective nanolaser operation with various structures. Particularly, future applications involving monolayer materials in waveguide-coupled on-chip-integrated circuitry and valleytronic nanophotonics require controlling, directing, and optimizing photoluminescence. In this context, photoluminescence enhancement from monolayer transition-metal dichalcogenides on patterned semiconducting substrates becomes attractive.
View Article and Find Full Text PDFWe investigate the nonlinear transmission of a ~280-layer turbostratic graphene sheet for near-infrared amplifier laser pulses (775 nm, Ti:sapphire laser) with a duration of 150-fs and 20-fs. Saturable absorption is observed in both cases, however it is not very strong, amounting to ~13% transmittance change for the 20-fs (150-fs) pulses at a peak intensity of 30 GW/cm (4 GW/cm). The dependence on incident peak intensity is reproduced well using a theoretical model for the time-dependent saturable absorption, where the excited carriers vacate the photo-excited energy range within 3-5 fs, which we attribute to energy redistribution due to carrier-carrier scattering.
View Article and Find Full Text PDFWe present terahertz (THz) detectors based on top-gated graphene field effect transistors (GFETs) with integrated split bow-tie antennas. The GFETs were fabricated using graphene grown by chemical vapor deposition (CVD). The THz detectors are capable of room-temperature rectification of a 0.
View Article and Find Full Text PDFWe compare different tilted-pulse-front pumping schemes for single-cycle THz generation in LiNbO(3) crystals both theoretically and experimentally in terms of conversion efficiency. The conventional setup with a single lens as an imaging element has been found to be highly inefficient in the case of sub-50 fs pump pulses, mainly due to the resulting chromatic aberrations. These aberrations are avoided in the proposed new setup, which employs two concave mirrors in a Keplerian telescope arrangement as the imaging sequence.
View Article and Find Full Text PDFWe demonstrate the principle applicability of antenna-coupled complementary metal oxide semiconductor (CMOS) field-effect transistor arrays as cameras for real-time coherent imaging at 591.4 GHz. By scanning a few detectors across the image plane, we synthesize a focal-plane array of 100×100 pixels with an active area of 20×20 mm2, which is applied to imaging in transmission and reflection geometries.
View Article and Find Full Text PDFWe demonstrate plasma-THz generation in ambient air with two-color (ω-2ω) optical excitation using input pulses with a bandwidth supporting sub-20-fs duration, yielding a continuous bandwidth exceeding 100 THz with no significant roll-off and a pulse energy of 360 nJ at a 1-kHz repetition rate. The key aspect in achieving this performance is an optimized geometry of the second-harmonic generation (SHG) crystal, producing a 2ω-field detuned from the second-harmonic of the ω-field, which promotes both a high polarization bandwidth and optimal ω-2ω temporal overlap in the plasma, as supported by theoretical results.
View Article and Find Full Text PDFWe present difference-frequency stabilization of free-running distributed-feedback (DFB) diode lasers, maintaining a stable phase-lock to a local oscillator (LO) signal. The technique has been applied to coherent hybrid THz imaging which employs a high-power electronic radiation source emitting at 0.62 THz and electro-optic detectors.
View Article and Find Full Text PDFWe present a 64x48 pixel 2D electro-optical terahertz (THz) imaging system using a photonic mixing device time-of-flight camera as an optical demodulating detector array. The combination of electro-optic detection with a time-of-flight camera increases sensitivity drastically, enabling the use of a nonamplified laser source for high-resolution real-time THz electro-optic imaging.
View Article and Find Full Text PDF