Members of the widely conserved high temperature requirement A (HtrA) family of serine proteases are involved in multiple aspects of protein quality control. In this context, they have been shown to efficiently degrade misfolded proteins or protein fragments. However, recent reports suggest that folded proteins can also be native substrates.
View Article and Find Full Text PDFThe formation of new dysfunctional blood vessels is a crucial stage in the development of various conditions such as macular degeneration, diabetes, cardiovascular disease, neurological disease and inflammatory disorders, as well as during tumor growth, eventually contributing to metastasis. An important factor involved in pathogenic angiogenesis is leucine-rich α-2-glycoprotein 1 (LRG1), the antibody blockade of which has been shown to lead to a reduction in both choroidal neovascularization and tumor growth in mouse models. In this work, the structural interactions between the LRG1 epitope and the Fab fragment of Magacizumab, a humanized function-blocking IgG4 against LRG1, are analysed, determining its specific binding mode and the key residues involved in LRG1 recognition.
View Article and Find Full Text PDFVitellogenin (Vg) has been implicated as a central protein in the immunity of egg-laying animals. Studies on a diverse set of species suggest that Vg supports health and longevity through binding to pathogens. Specific studies of honey bees (Apis mellifera) further indicate that the vitellogenin (vg) gene undergoes selection driven by local pathogen pressures.
View Article and Find Full Text PDFInfection of the human stomach by Helicobacter pylori remains a worldwide problem and greatly contributes to peptic ulcer disease and gastric cancer. Without active intervention approximately 50% of the world population will continue to be infected with this gastric pathogen. Current eradication, called triple therapy, entails a proton-pump inhibitor and two broadband antibiotics, however resistance to either clarithromycin or metronidazole is greater than 25% and rising.
View Article and Find Full Text PDFTerminal uridyltransferases (TUTases) execute 3' RNA uridylation across protists, fungi, metazoan and plant species. Uridylation plays a particularly prominent role in RNA processing pathways of kinetoplastid protists typified by the causative agent of African sleeping sickness, Trypanosoma brucei In mitochondria of this pathogen, most mRNAs are internally modified by U-insertion/deletion editing while guide RNAs and rRNAs are U-tailed. The founding member of TUTase family, RNA editing TUTase 1 (RET1), functions as a subunit of the 3' processome in uridylation of gRNA precursors and mature guide RNAs.
View Article and Find Full Text PDFMicrobial rhodopsins are light-activated, seven-α-helical, retinylidene transmembrane proteins that have been identified in thousands of organisms across archaea, bacteria, fungi, and algae. Although they share a high degree of sequence identity and thus similarity in structure, many unique functions have been discovered and characterized among them. Some function as outward proton pumps, some as inward chloride pumps, whereas others function as light sensors or ion channels.
View Article and Find Full Text PDFFor the last two decades, CASP has assessed the state of the art in techniques for protein structure prediction and identified areas which required further development. CASP would not have been possible without the prediction targets provided by the experimental structural biology community. In the latest experiment, CASP10, more than 100 structures were suggested as prediction targets, some of which appeared to be extraordinarily difficult for modeling.
View Article and Find Full Text PDFHelicobacter pylori survival in acidic environments relies on cytoplasmic hydrolysis of gastric urea into ammonia and carbon dioxide, which buffer the pathogen's periplasm. Urea uptake is greatly enhanced and regulated by HpUreI, a proton-gated inner membrane channel protein essential for gastric survival of H. pylori.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
October 2013
To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutation substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
October 2013
Proteorhodopsins (PRs), members of the microbial rhodopsin superfamily of seven-transmembrane-helix proteins that use retinal chromophores, comprise the largest subfamily of rhodopsins, yet very little structural information is available. PRs are ubiquitous throughout the biosphere and their genes have been sequenced in numerous species of bacteria. They have been shown to exhibit ion-pumping activity like their archaeal homolog bacteriorhodopsin (BR).
View Article and Find Full Text PDFThe tumour suppressor p53 is the most frequently mutated gene in human cancer. Reactivation of mutant p53 by small molecules is an exciting potential cancer therapy. Although several compounds restore wild-type function to mutant p53, their binding sites and mechanisms of action are elusive.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
January 2013
AHNAK, a large 629 kDa protein, has been implicated in membrane repair, and the annexin A2-S100A10 heterotetramer [(p11)(2)(AnxA2)(2))] has high affinity for several regions of its 1002-amino-acid C-terminal domain. (p11)(2)(AnxA2)(2) is often localized near the plasma membrane, and this C2-symmetric platform is proposed to be involved in the bridging of membrane vesicles and trafficking of proteins to the plasma membrane. All three proteins co-localize at the intracellular face of the plasma membrane in a Ca(2+)-dependent manner.
View Article and Find Full Text PDFHalf the world's population is chronically infected with Helicobacter pylori, causing gastritis, gastric ulcers and an increased incidence of gastric adenocarcinoma. Its proton-gated inner-membrane urea channel, HpUreI, is essential for survival in the acidic environment of the stomach. The channel is closed at neutral pH and opens at acidic pH to allow the rapid access of urea to cytoplasmic urease.
View Article and Find Full Text PDFAnnexin A2 (AnxA2), a 38-kDa member of the Ca2+-binding annexin family, has been implicated in numerous cancer pathways. Withaferin A (WithfA), a natural plant compound, has been reported previously to bind covalently to Cys133 of the AnxA2 core domain leading to a reduction of the invasive capabilities of cancer cells by altering their cytoskeleton. We show here that AnxA2 has an inhibitory effect on actin polymerization, and a modification with WithfA significantly increases this inhibitory role of AnxA2.
View Article and Find Full Text PDFAnnexin A2 (AnxA2), a Ca2+-regulated phospholipid binding protein involved in membrane-cytoskeleton contacts and membrane transport, exists in two physical states, as a monomer or in a heterotetrameric complex mediated by S100A10. Formation of the AnxA2-S100A10 complex is of crucial regulatory importance because only the complex is firmly anchored in the plasma membrane, where it functions in the plasma membrane targeting/recruitment of certain ion channels and receptors. The S100A10 binding motif is located in the first 12 residues of the AnxA2 N-terminal domain, but conflicting reports exist as to the importance of N-terminal AnxA2 acetylation with regard to S100A10 binding.
View Article and Find Full Text PDFBiochim Biophys Acta
December 2012
Background: Although rabbit antibodies are widely used in research, no structures of rabbit antigen-binding fragments (Fab) have been reported. M204 is a rabbit monoclonal antibody that recognizes a generic epitope that is common to prefibrillar amyloid oligomers formed from many different amyloidogenic sequences. Amyloid oligomers are widely suspected to be a primary causative agent of pathogenesis in several age-related neurodegenerative diseases, such as Alzheimer's disease.
View Article and Find Full Text PDFBacteriorhodopsin (BR) and sensory rhodopsin II (SRII), homologous photoactive proteins in haloarchaea, have different molecular functions. BR is a light-driven proton pump, whereas SRII is a phototaxis receptor that transmits a light-induced conformational change to its transducer HtrII. Despite these distinctly different functions, a single residue substitution, Ala215 to Thr215 in the BR retinal-binding pocket, enables its photochemical reactions to transmit signals to HtrII and mediate phototaxis.
View Article and Find Full Text PDFLight-oxygen-voltage (LOV) domains are blue light-activated signaling modules integral to a wide range of photosensory proteins. Upon illumination, LOV domains form internal protein-flavin adducts that generate conformational changes which control effector function. Here we advance our understanding of LOV regulation with structural, biophysical, and biochemical studies of EL222, a light-regulated DNA-binding protein.
View Article and Find Full Text PDFRNA uridylylation reactions catalyzed by terminal uridylyl transferases (TUTases) play critical roles in the formation of the mitochondrial transcriptome in trypanosomes. Two mitochondrial RNA editing TUTases have been described: RNA editing TUTase 1 catalyzes guide RNA, ribosomal RNA, and mRNA 3'-uridylylation, and RNA editing TUTase 2 acts as a subunit of the RNA editing core complex (also referred to as the 20S editosome) to perform guided U-insertion mRNA editing. Although RNA editing TUTase 1 and RNA editing TUTase 2 carry out distinct functions and possess dissimilar enzymatic properties, their catalytic N-terminal domain and base recognition C-terminal domain display a high degree of similarity, while their middle domains are less conserved.
View Article and Find Full Text PDFHomologous to bacteriorhodopsin and even more to proteorhodopsin, xanthorhodopsin is a light-driven proton pump that, in addition to retinal, contains a noncovalently bound carotenoid with a function of a light-harvesting antenna. We determined the structure of this eubacterial membrane protein-carotenoid complex by X-ray diffraction, to 1.9-A resolution.
View Article and Find Full Text PDFS100A4 (metastasin) is a member of the S100 family of calcium-binding proteins that is directly involved in tumorigenesis. Until recently, the only structural information available was the solution NMR structure of the inactive calcium-free form of the protein. Here we report the crystal structure of human S100A4 in the active calcium-bound state at 2.
View Article and Find Full Text PDFThe N-aryl carbamate URB602 (biphenyl-3-ylcarbamic acid cyclohexyl ester) is an inhibitor of monoacylglycerol lipase (MGL), a serine hydrolase involved in the biological deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). Here, we investigated the mechanism by which URB602 inhibits purified recombinant rat MGL by using a combination of biochemical and structure-activity relationship (SAR) approaches. We found that URB602 weakly inhibits recombinant MGL (IC(50) = 223 +/- 63 microM) through a rapid and noncompetitive mechanism.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2007
Terminal RNA uridylyltransferases (TUTases) catalyze template-independent UMP addition to the 3' hydroxyl of RNA. TUTases belong to the DNA polymerase beta superfamily of nucleotidyltransferases that share a conserved catalytic domain bearing three metal-binding carboxylate residues. We have previously determined crystal structures of the UTP-bound and apo forms of the minimal trypanosomal TUTase, TbTUT4, which is composed solely of the N-terminal catalytic and C-terminal base-recognition domains.
View Article and Find Full Text PDF