Publications by authors named "Hartmann L"

Molecular classification of high-grade serous ovarian cancer (HGSOC) using transcriptional profiling has proven to be complex and difficult to validate across studies. We determined gene expression profiles of 174 well-annotated HGSOCs and demonstrate prognostic significance of the prespecified TCGA Network gene signatures. Furthermore, we confirm the presence of four HGSOC transcriptional subtypes using a de novo classification.

View Article and Find Full Text PDF

Initially described as an RNA surveillance pathway, nonsense-mediated decay (NMD) is also recognized to function in the regulation of host gene expression. In this issue of Cell Host & Microbe, three studies describe NMD-mediated defense strategies of plants and mammalian cells in response to pathogen infection.

View Article and Find Full Text PDF

Background: Contralateral prophylactic mastectomy (CPM) is increasingly chosen by breast cancer patients and may be related to increased use of immediate reconstruction. This study examines long-term patient satisfaction with CPM and reconstruction in a historical cohort.

Methods: 621 unilateral breast cancer patients with a family history of breast cancer who underwent CPM between 1960 and 1993 were surveyed regarding quality of life (QOL) and satisfaction with CPM at two time points (approximately 10 and 20 years after CPM).

View Article and Find Full Text PDF

The synthesis of photoswitchable glycooligomers is presented by applying solid-phase polymer synthesis and functional building blocks. The obtained glycoligands are monodisperse and present azobenzene moieties as well as sugar ligands at defined positions within the oligomeric backbone and side chains, respectively. We show that the combination of molecular precision together with the photoswitchable properties of the azobenzene unit allows for the photosensitive control of glycoligand binding to protein receptors.

View Article and Find Full Text PDF

To evaluate computer-aided stenosis detection for computed tomography coronary angiography (CTA) in comparison with human reading and conventional coronary angiography (CCA) as the reference standard. 50 patients underwent CTA and CCA and out of these 44 were evaluable for computer-aided stenosis detection. The diagnostic performance of the software and of human reading were compared and quantitative coronary angiography (QCA) served as the reference standard for the detection of significant stenosis (>50 %).

View Article and Find Full Text PDF

The use of the simple Hertz model for the analysis of Atomic Force Microscopy (AFM) force-distance curves measured on soft spherical cell-like particles leads to significant underestimations of the objects Young's modulus E. To correct this error, a mixed double contact model (based on the simple Hertz model and the Johnson-Kendall-Roberts (JKR) model) was derived. The model considers two independent particle deformation sites: (i) the upper part of the particle is deformed by the AFM indenter, (ii) the bottom part is deformed by the substrate, which is usually unnoticed.

View Article and Find Full Text PDF

Parental stress is increased in clinical contexts (e.g., child psychiatry) and correlates with behavioral and emotional problems of children.

View Article and Find Full Text PDF
Article Synopsis
  • Isolated trisomy 13 in acute myeloid leukemia (AML+13) is rare and linked to worse relapse-free survival (RFS) and overall survival (OS) compared to other ELN Intermediate-II AML patients.
  • Analysis of 34 AML+13 patients showed high mutation frequencies in genes like RUNX1 (75%) and spliceosome components (88%), indicating a genetic homogeneity in this subgroup.
  • Gene expression profiling revealed significant alterations, including upregulation of FOXO1 and FLT3, further defining AML+13 as a distinctive subgroup with critical genetic changes.
View Article and Find Full Text PDF

Synthetic glycooligomers have emerged as valuable analogues for multivalent glycan structures in nature. These multivalent carbohydrates bind to specific receptors and play a key role in biological processes. In this work, we investigate the specific interaction between mannose ligand presenting soft colloidal probes (SCPs) attached to an atomic force microscope (AFM) cantilever and a Concanavalin A (ConA) receptor surface in the presence of competing glycooligomer ligands.

View Article and Find Full Text PDF

The presence of regulatory T cells (Treg) in solid tumors is known to play a role in patient survival in ovarian cancer and other malignancies. We assessed inherited genetic variations via 749 tag single-nucleotide polymorphisms (SNP) in 25 Treg-associated genes (CD28, CTLA4, FOXP3, IDO1, IL10, IL10RA, IL15, 1L17RA, IL23A, IL23R, IL2RA, IL6, IL6R, IL8, LGALS1, LGALS9, MAP3K8, STAT5A, STAT5B, TGFB1, TGFB2, TGFB3, TGFBR1, TGRBR2, and TGFBR3) in relation to ovarian cancer survival. We analyzed genotype and overall survival in 10,084 women with invasive epithelial ovarian cancer, including 5,248 high-grade serous, 1,452 endometrioid, 795 clear cell, and 661 mucinous carcinoma cases of European descent across 28 studies from the Ovarian Cancer Association Consortium (OCAC).

View Article and Find Full Text PDF

To reveal biologic mechanisms underlying clinical outcome of high-grade serous (HGS) epithelial ovarian carcinomas (EOC), we evaluated the association between tumor epigenetic changes and time to recurrence (TTR). We assessed methylation at approximately 450,000 genome-wide CpGs in tumors of 337 Mayo Clinic (Rochester, MN) patients. Semi-supervised clustering of discovery (n=168) and validation (n=169) sets was used to determine clinically relevant methylation classes.

View Article and Find Full Text PDF

Mussels withstand high-energy wave impacts in rocky seashore habitats by fastening tightly to surfaces with tough and self-healing proteinaceous fibers called byssal threads. Thread mechanical behavior is believed to arise from reversibly breakable metal coordination cross-links embedded in histidine-rich protein domains (HRDs) in the principle load-bearing proteins comprising the fibrous thread core. In order to investigate HRD behavior at the molecular level, we have synthesized a histidine-rich peptide derived from mussel proteins (His5-bys) and studied its reversible adhesive self-interaction in the presence and absence of metal ions using PEG-based soft-colloidal probes (SCPs).

View Article and Find Full Text PDF

We introduce a novel class of membrane active peptidomimetics, the amphiphilic cationic β(3R3)-peptides, and evaluate their potential as antimicrobial agents. The design criteria, the building block and oligomer synthesis as well as a detailed structure-activity relationship (SAR) study are reported. Specifically, infrared reflection absorption spectroscopy (IRRAS) was employed to investigate structural features of amphiphilic cationic β(3R3)-peptide sequences at the hydrophobic/hydrophilic air/liquid interface.

View Article and Find Full Text PDF

Pathogens such as viruses and bacteria use their envelope proteins and their adhesin lectins to recognize the glycan residues presented on the cell surface of the target tissues. This principle of recognition is used in a new electrochemical displacement sensor for the protein concanavalin A (ConA). A gold electrode was first modified with a self-assembled monolayer of a thiolated mannose/OEG conjugate and a ferrocene boroxol derivative was pre-assembled as reporter molecule onto the mannose surface.

View Article and Find Full Text PDF

Over one million American women have a benign breast biopsy annually. Sclerosing adenosis (SA) is a common, but poorly understood benign breast lesion demonstrating increased numbers of distorted lobules accompanied by stromal fibrosis. Few studies of its association with breast cancer have been conducted, with contradictory results.

View Article and Find Full Text PDF

Atypical hyperplasia is a high-risk premalignant lesion of the breast, but its biology is poorly understood. Many believe that atypical ductal hyperplasia (ADH) is a direct precursor for low-grade ductal breast cancer, whereas atypical lobular hyperplasia (ALH) serves as a risk indicator. These assumptions underlie current clinical recommendations.

View Article and Find Full Text PDF

Multivalency as a key principle in nature has been successfully adopted for the design and synthesis of artificial glycoligands by attaching multiple copies of monosaccharides to a synthetic scaffold. Besides their potential in various applied areas, e.g.

View Article and Find Full Text PDF

Purpose: Ovarian cancer has a high recurrence and mortality rate. A barrier to improved outcomes includes a lack of accurate models for preclinical testing of novel therapeutics.

Experimental Design: Clinically relevant, patient-derived tumorgraft models were generated from sequential patients and the first 168 engrafted models are described.

View Article and Find Full Text PDF

We present the solid phase synthesis of carbohydrate-functionalized oligo(amidoamines) with different functionalization patterns utilizing a novel alphabet of six differently glycosylated building blocks. Highly efficient in flow conjugation of thioglycosides to a double-bond presenting diethylentriamine precursor is the key step to prepare these building blocks suitable for fully automated solid-phase synthesis. Introduction of the sugar ligands via functionalized building blocks rather than postfunctionalization of the oligomeric backbone allows for the straightforward synthesis of multivalent glycoligands with full control over monomer sequence and functionalization pattern.

View Article and Find Full Text PDF

The present review focuses on the recent progress made in thin film orientation of semi-conducting polymers with particular emphasis on methods using epitaxy and shear forces. The main results reported in this review deal with regioregular poly(3-alkylthiophene)s and poly(dialkylfluorenes). Correlations existing between processing conditions, macromolecular parameters and the resulting structures formed in thin films are underlined.

View Article and Find Full Text PDF

Ovarian cancer is an immune reactive malignancy with a complex immune suppressive network that blunts successful immune eradication. This suppressive microenvironment may be mediated by recruitment or induction of CD4(+) regulatory T cells (Tregs). Our study sought to investigate the association of tumor-infiltrating CD4(+)CD25(+)FOXP3(+) Tregs, and other immune factors, with clinical outcome in serous ovarian cancer patients.

View Article and Find Full Text PDF

Ovarian cancer is a clinically and molecularly heterogeneous disease. The driving forces behind this variability are unknown. Here, we report wide variation in the expression of the DNA cytosine deaminase APOBEC3B, with elevated expression in the majority of ovarian cancer cell lines (three SDs above the mean of normal ovarian surface epithelial cells) and high-grade primary ovarian cancers.

View Article and Find Full Text PDF

In this study we present the design and synthesis of a novel class of peptidomimetics, the β(3R3)-peptides. Via alternating directions of the amide bonds along β-peptide sequences, β(3R3)-peptides can potentially extend the structural space available to β-peptidic foldamers. Detailed analysis at the air-water interface shows strand conformations and the formation of sheet assemblies with different degrees of crystallinity.

View Article and Find Full Text PDF

The aim of this study was to investigate biological effects and potential health risks due to two different metal-inert-gas (MIG) welding fumes (MIG welding of aluminium and MIG soldering of zinc coated steel) in healthy humans. In a threefold cross-over design study 12 male subjects were exposed to three different exposure scenarios. Exposures were performed under controlled conditions in the Aachener Workplace Simulation Laboratory (AWSL).

View Article and Find Full Text PDF