Outbreaks of highly pathogenic avian influenza virus (HPAIV) often result in the infection of millions of poultry, causing up to 100% mortality. HPAIV has been shown to emerge from low pathogenicity avian influenza virus (LPAIV) in field outbreaks. Direct evidence for the emergence of H7N7 HPAIV from a LPAIV precursor with a rare di-basic cleavage site (DBCS) was identified in the UK in 2008.
View Article and Find Full Text PDFThe highly pathogenic avian influenza (HPAI) H5N1 influenza virus has been a public health concern for more than a decade because of its frequent zoonoses and the high case fatality rate associated with human infections. Severe disease following H5N1 influenza infection is often associated with dysregulated host innate immune response also known as cytokine storm but the virological and cellular basis of these responses has not been clearly described. We rescued a series of 6:2 reassortant viruses that combined a PR8 HA/NA pairing with the internal gene segments from human adapted H1N1, H3N2, or avian H5N1 viruses and found that mice infected with the virus with H5N1 internal genes suffered severe weight loss associated with increased lung cytokines but not high viral load.
View Article and Find Full Text PDFInfluenza viruses readily mutate by accumulating point mutations and also by reassortment in which they acquire whole gene segments from another virus in a co-infected host. The NS1 gene is a major virulence factor of influenza A virus. The effects of changes in NS1 sequence depend on the influenza polymerase constellation.
View Article and Find Full Text PDFBackground: Resistance to the neuraminidase inhibitor oseltamivir can be conferred by a well-characterized mutation in the neuraminidase gene, H275Y. In human H1N1 viruses that circulated in the first years of the 21st century, this mutation carried a fitness cost and resistant viruses were rare. During the 2007-08 influenza season, oseltamivir-resistant viruses of H1N1 phenotype emerged and predominated.
View Article and Find Full Text PDFMost influenza vaccines are produced in chicken eggs but recent human influenza strains often do not grow well in this substrate. The PER.C6 cell line is an alternative platform for vaccine production.
View Article and Find Full Text PDFReverse genetics, the generation of influenza viruses from cDNA, presents a rapid method for creating vaccine strains. The technique necessitates the use of cultured cells. Due to technical and regulatory requirements, the choice of cell lines for production of human influenza vaccines is limited.
View Article and Find Full Text PDFMany viruses, including human influenza A virus, have developed strategies for counteracting the host type I interferon (IFN) response. We have explored whether avian influenza viruses were less capable of combating the type I IFN response in mammalian cells, as this might be a determinant of host range restriction. A panel of avian influenza viruses isolated between 1927 and 1997 was assembled.
View Article and Find Full Text PDFTransmembrane adaptor molecule LAT (linker for activation of T cells) forms a central scaffold for signaling protein complexes that accumulate in the vicinity of activated T cell antigen receptors (TCR). Here we used biochemical analysis of immunoisolated plasma membrane domains and fluorescence imaging of green fluorescence protein-tagged signaling proteins to investigate the contributions of different tyrosine-based signaling protein docking sites of LAT to the formation of LAT signaling protein assemblies in TCR membrane domains. We found that the phospholipase C gamma docking site of LAT and different Grb2/Gads docking sites function in an interdependent fashion and synergize to accumulate LAT, Grb2, and phospholipase C gamma in TCR signaling assemblies.
View Article and Find Full Text PDF