Publications by authors named "Hartenstein V"

Wilhelm Roux promoted the newly emerged field of developmental mechanics by establishing the journal 'Archiv für Entwicklungsmechanik', currently known as 'Development, Genes and Evolution'. The founder and supporters of the journal were all men, as were the authors in the first 3 years of the journal's existence. We therefore addressed the question-in what ways did women scientists contribute to this new research field and what impact did they have.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on the fruit fly Drosophila melanogaster as a crucial model in neuroscience, aided by extensive resources like the FlyWire whole-brain connectome and a hierarchical annotation of neuron classes and types.
  • The study reveals 8,453 annotated cell types, with 4,581 being newly identified, highlighting the complexity of the fly brain and emphasizing the difficulty in reidentifying some hemibrain cell types in FlyWire.
  • A new definition of cell type is proposed based on cell similarities across different brains, and the study illustrates findings related to neuron connectivity, structural stability, and a consensus atlas for the fly brain's neuroanatomy, supporting future comparative studies.
View Article and Find Full Text PDF

The ellipsoid body (EB) of the insect brain performs pivotal functions in controlling navigation. Input and output of the EB is provided by multiple classes of R-neurons (now referred to as ER-neurons) and columnar neurons which interact with each other in a stereotypical and spatially highly ordered manner. The developmental mechanisms that control the connectivity and topography of EB neurons are largely unknown.

View Article and Find Full Text PDF

Acoel flatworms have played a relevant role in classical (and current) discussions on the evolutionary origin of bilaterian animals. This is mostly derived from the apparent simplicity of their body architectures. This tenet has been challenged over the last couple of decades, mostly because detailed studies of their morphology and the introduction of multiple genomic technologies have unveiled a complexity of cell types, tissular arrangements and patterning mechanisms that were hidden below this 'superficial' simplicity.

View Article and Find Full Text PDF

The marine microturbellarian Macrostomum lignano (Platyhelminthes, Rhabditophora) is an emerging laboratory model used by a growing community of researchers because it is easy to cultivate, has a fully sequenced genome, and offers multiple molecular tools for its study. M. lignano has a compartmentalized brain that receives sensory information from receptors integrated in the epidermis.

View Article and Find Full Text PDF

High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • The "ribbon" structure of connected Golgi stacks is typically thought to exist only in vertebrates, but this study suggests it might have originated earlier in animal evolution.
  • Researchers found ribbon-like structures in various metazoans, indicating that this architectural feature predates vertebrates and may be linked to processes like embryogenesis.
  • The study proposes that the evolution of specific proteins (GRASP) may have facilitated the formation of these Golgi ribbons, which could have important biological roles that are still not fully understood.
View Article and Find Full Text PDF

Larvae of the fruit fly are a powerful study case for understanding the neural circuits underlying behavior. Indeed, the numerical simplicity of the larval brain has permitted the reconstruction of its synaptic connectome, and genetic tools for manipulating single, identified neurons allow neural circuit function to be investigated with relative ease and precision. We focus on one of the most complex neurons in the brain of the larva (of either sex), the GABAergic anterior paired lateral neuron (APL).

View Article and Find Full Text PDF

Recent work in has uncovered several neighboring classes of sleep-regulatory neurons within the central complex. However, the logic of connectivity and network motifs remains limited by the incomplete examination of relevant cell types. Using a recent genetic-anatomic classification of ellipsoid body ring neurons, we conducted a thermogenetic screen in female flies to assess sleep/wake behavior and identified two wake-promoting drivers that label ER3d neurons and two sleep-promoting drivers that express in ER3m cells.

View Article and Find Full Text PDF
Article Synopsis
  • The fruit fly is a key model organism in neuroscience due to its complex behaviors and accessible nervous system, bolstered by collaborative genetic resources.*
  • The FlyWire project has produced the first complete brain connectome of an adult fruit fly, providing a detailed catalog of approximately 130,000 neurons, including 4,552 cell types.*
  • Analysis indicated that while some neuronal connections were stable, others showed variability across individuals, revealing complexities in brain function and suggesting some cell types from previous studies may not be reliably identified in this new dataset.*
View Article and Find Full Text PDF

The representation and integration of internal and external cues is crucial for any organism to execute appropriate behaviors. In insects, a highly conserved region of the brain, the central complex (CX), functions in the representation of spatial information and behavioral states, as well as the transformation of this information into desired navigational commands. How does this relatively invariant structure enable the incorporation of information from the diversity of anatomical, behavioral, and ecological niches occupied by insects? Here, we examine the input channels to the CX in the context of their development and evolution.

View Article and Find Full Text PDF

Brains contain networks of interconnected neurons and so knowing the network architecture is essential for understanding brain function. We therefore mapped the synaptic-resolution connectome of an entire insect brain ( larva) with rich behavior, including learning, value computation, and action selection, comprising 3016 neurons and 548,000 synapses. We characterized neuron types, hubs, feedforward and feedback pathways, as well as cross-hemisphere and brain-nerve cord interactions.

View Article and Find Full Text PDF

In Drosophila melanogaster, processing of gustatory information and controlling feeding behavior are executed by neural circuits located in the subesophageal zone (SEZ) of the brain. Gustatory receptor neurons (GRNs) project their axons in the primary gustatory center (PGC), which is located in the SEZ. To address the function of the PGC, we need detailed information about the different classes of gustatory interneurons that frame the PGC.

View Article and Find Full Text PDF

During brain development of Drosophila melanogaster many transcription factors are involved in regulating neural fate and morphogenesis. In our study we show that the transcription factor Orthopedia (Otp), a member of the 57B homeobox gene cluster, plays an important role in this process. Otp is expressed in a stable pattern in defined lineages from mid-embryonic stages into the adult brain and therefore a very stable marker for these lineages.

View Article and Find Full Text PDF

Insect brains are formed by conserved sets of neural lineages whose fibers form cohesive bundles with characteristic projection patterns. Within the brain neuropil, these bundles establish a system of fascicles constituting the macrocircuitry of the brain. The overall architecture of the neuropils and the macrocircuitry appear to be conserved.

View Article and Find Full Text PDF

Many insects use patterns of polarized light in the sky to orient and navigate. Here, we functionally characterize neural circuitry in the fruit fly, , that conveys polarized light signals from the eye to the central complex, a brain region essential for the fly's sense of direction. Neurons tuned to the angle of polarization of ultraviolet light are found throughout the anterior visual pathway, connecting the optic lobes with the central complex via the anterior optic tubercle and bulb, in a homologous organization to the 'sky compass' pathways described in other insects.

View Article and Find Full Text PDF

Aging is characterized by a decline in neuronal function in all animal species investigated so far. Functional changes are accompanied by and may be in part caused by, structurally visible degenerative changes in neurons. In the mammalian brain, normal aging shows abnormalities in dendrites and axons, as well as ultrastructural changes in synapses, rather than global neuron loss.

View Article and Find Full Text PDF

An adaptive transition from exploring the environment in search of vital resources to exploiting these resources once the search was successful is important to all animals. Here we study the neuronal circuitry that allows larval of either sex to negotiate this exploration-exploitation transition. We do so by combining Pavlovian conditioning with high-resolution behavioral tracking, optogenetic manipulation of individually identified neurons, and EM data-based analyses of synaptic organization.

View Article and Find Full Text PDF

Macrophages are motile cells that roam the extracellular spaces within organs or the body cavity and carry out essential functions in organ development and immunity. New work published in The EMBO Journal adds surprising new insights into the heterogeneity of Drosophila macrophages revealing many similarities to their vertebrate counterparts.

View Article and Find Full Text PDF

Complex nervous systems have a modular architecture, whereby reiterative groups of neurons ("modules") that share certain structural and functional properties are integrated into large neural circuits. Neurons develop from proliferating progenitor cells that, based on their location and time of appearance, are defined by certain genetic programs. Given that genes expressed by a given progenitor play a fundamental role in determining the properties of its lineage (i.

View Article and Find Full Text PDF
Article Synopsis
  • Various genetic techniques help trace cell lineage during tissue development, with some focusing on spatial/temporal aspects and others linking gene expression to lineage.
  • The G-TRACE system allows for quick visualization of GAL4 expression patterns, enabling genome-wide expression-based lineage studies conducted by UCLA students and high school scholars.
  • Findings revealed new expression-based lineage patterns and were compiled into the G-TRACE Expression Database (GED), contributing to better student learning outcomes and retention in STEM fields.
View Article and Find Full Text PDF

The uptake of macromolecules and larger energy-rich particles into the cell is known as phagocytosis. Phagocytosed material is enzymatically degraded in membrane-bound vesicles of the endosome/lysosome system (intracellular digestion). Whereas most, if not all, cells of the animal body are equipped with the molecular apparatus for phagocytosis and intracellular digestion, a few cell types are specialized for a highly efficient mode of phagocytosis.

View Article and Find Full Text PDF

Living cells depend on a constant supply of energy-rich organic molecules from the environment. Small molecules pass into the interior of the cell via simple diffusion or active transport carried out by membrane bound transporters; macromolecules, or entire cells, are taken up by endocytosis/phagocytosis, and are degraded intracellularly in specialized membrane bound compartments (lysosomes). Whereas all cells are capable of transporting molecules through the membrane, the efficient procurement, digestion and uptake of nutrients have become the function of specialized cell types and organs, forming the digestive system in multicellular animals.

View Article and Find Full Text PDF

Photoreceptor cells (PRCs) across the animal kingdom are characterized by a stacking of apical membranes to accommodate the high abundance of photopigment. In arthropods and many other invertebrate phyla PRC membrane stacks adopt the shape of densely packed microvilli that form a structure called rhabdomere. PRCs and surrounding accessory cells, including pigment cells and lens-forming cells, are grouped in stereotyped units, the ommatidia.

View Article and Find Full Text PDF

Interest in the study of Xenacoelomorpha has recently been revived due to realization of its key phylogenetic position as the putative sister group of the remaining Bilateria. Phylogenomic studies have attracted the attention of researchers interested in the evolution of animals and the origin of novelties. However, it is clear that a proper understanding of novelties can only be gained in the context of thorough descriptions of the anatomy of the different members of this phylum.

View Article and Find Full Text PDF