Publications by authors named "Harshita Lohani"

Sodium batteries are considered a promising candidate for large-scale grid storage at tropical climate zone, and solid-state sodium metal batteries have a strong proposition as high energy density battery. The main challenge is to develop ultra-pure solid-state ceramic electrolyte and compatible metal interface. Here, a scalable and energy-efficient synthesis strategy of sodium (Na) Super Ionic CONductor, NaZrSiPO (x = 2, NZSP) solid electrolyte, has been introduced with the complete removal of unreacted zirconium oxide (ZrO) impurities.

View Article and Find Full Text PDF

This study demonstrates the enhanced performance in high-voltage sodium full cells using a novel electrolyte composition featuring a highly fluorinated borate ester anion (1 M Na[B(hfip)].3DME) in a binary carbonate mixture (EC:EMC), compared to a conventional electrolyte (1 M Na[PF] EC:EMC). The prolonged cycling performance of sodium metal battery employing high voltage cathodes (NVPF@C@CNT and NFMO) is attributed to uniform and dense sodium deposition along with the formation of fluorine and boron-rich solid electrolyte interphase (SEI) on the sodium metal anode.

View Article and Find Full Text PDF

P2-type Na Ni Mn Ti O (NMTNO) cathode is a preeminent electrode material for Na-ion batteries owing to its open prismatic framework, air-moisture stability, inexpensiveness, appealing capacity, environmental benignity, and Co-free composition. However, the poor cycling stability, sluggish Na-ion kinetics induced in bulk-sized cathode particles, cracking, and exfoliation in the crystallites remain a setback. To outmaneuver these, a designing strategy of a mechanically robust, hexagonal nano-crystallites of P2-type Na Ni Mn Ti O (NMTNO ) electrode via quick, energy-efficient, and low-cost microwave-irradiated synthesis is proposed.

View Article and Find Full Text PDF

In this work, a strategy is introduced wherein without keeping any excess cathode, a practical full-cell sodium-ion battery has been demonstrated by utilizing a hard carbon (HC) anode and sodium vanadium fluorophosphate and carbon nanotube composite (NVPF@C@CNT) cathode. A thin, robust, and durable solid electrolyte interface (SEI) is created on the surface of HC through its incubation wetted with a fluoroethylene carbonate (FEC)-rich warm electrolyte in direct contact with Na metal. During the incubation, the HC anode is partially sodiated and passivated with a thin SEI layer.

View Article and Find Full Text PDF