Publications by authors named "Harsharan S Bhatia"

SARS-CoV-2 infection is associated with long-lasting neurological symptoms, although the underlying mechanisms remain unclear. Using optical clearing and imaging, we observed the accumulation of SARS-CoV-2 spike protein in the skull-meninges-brain axis of human COVID-19 patients, persisting long after viral clearance. Further, biomarkers of neurodegeneration were elevated in the cerebrospinal fluid from long COVID patients, and proteomic analysis of human skull, meninges, and brain samples revealed dysregulated inflammatory pathways and neurodegeneration-associated changes.

View Article and Find Full Text PDF
Article Synopsis
  • - The study highlights the unique molecular characteristics of bone marrow in the skull, contrasting it with other bones and demonstrating its significant role in immune responses within the brain and meninges.
  • - Researchers found that mouse skull marrow exhibits a distinct transcriptomic profile, particularly in relation to neutrophils, and similar proteomic differences were observed in human skull marrow.
  • - Advanced imaging techniques reveal the structural connections between the skull and meninges, and the skull marrow's inflammatory response correlates with neurological disorders, suggesting its potential in diagnosing and treating brain diseases.
View Article and Find Full Text PDF

Neuroinflammation and oxidative stress are conditions leading to neurological and neuropsychiatric disorders. Natural compounds exerting anti-inflammatory and anti-oxidative effects, such as Licochalcone A, a bioactive flavonoid present in a traditional Chinese herb (licorice), might be beneficial for the treatment of those disorders. Therefore, this study aimed to investigate the anti-inflammatory and anti-oxidative effects of Licochalcone A in LPS-activated primary rat microglia.

View Article and Find Full Text PDF

Spatial molecular profiling of complex tissues is essential to investigate cellular function in physiological and pathological states. However, methods for molecular analysis of large biological specimens imaged in 3D are lacking. Here, we present DISCO-MS, a technology that combines whole-organ/whole-organism clearing and imaging, deep-learning-based image analysis, robotic tissue extraction, and ultra-high-sensitivity mass spectrometry.

View Article and Find Full Text PDF

The increase in the usage of silica nanoparticles (SiNPs) in the industrial and medical fields has raised concerns about their possible adverse effects on human health. The present study aimed to investigate the potential adverse effects of SiNPs at daily doses of 25 and 100 mg/kg body weight intraperitoneally (i.p.

View Article and Find Full Text PDF

Analysis of entire transparent rodent bodies after clearing could provide holistic biological information in health and disease, but reliable imaging and quantification of fluorescent protein signals deep inside the tissues has remained a challenge. Here, we developed vDISCO, a pressure-driven, nanobody-based whole-body immunolabeling technology to enhance the signal of fluorescent proteins by up to two orders of magnitude. This allowed us to image and quantify subcellular details through bones, skin and highly autofluorescent tissues of intact transparent mice.

View Article and Find Full Text PDF

Background: Neuroinflammation is a key factor of Alzheimer's disease (AD) and other neurodegenerative conditions. Microglia are the resident mononuclear immune cells of the central nervous system (CNS). They play an essential role in the maintenance of homeostasis and responses to neuroinflammation.

View Article and Find Full Text PDF

Bifenthrin (BF) is a synthetic pyrethroid pesticide widely used in several countries to manage insect pests on diverse agricultural crops. Growing evidence indicates that BF exposure is associated with an increased risk of developing neurodegenerative disorders. However, the mechanisms by which BF induces neurological and anxiety alterations in the frontal cortex and striatum are not well known.

View Article and Find Full Text PDF

Thymoquinone is an antioxidant phytochemical that has been shown to inhibit neuroinflammation. However, little is known about the potential roles of intracellular antioxidant signalling pathways in its anti-inflammatory activity. The objective of this study was to elucidate the roles played by activation of the Nrf2/ARE antioxidant mechanisms in the anti-inflammatory activity of this compound.

View Article and Find Full Text PDF

Exaggerated inflammatory responses in microglia represent one of the major risk factors for various central nervous system's (CNS) associated pathologies. Release of excessive inflammatory mediators such as prostaglandins and cytokines are the hallmark of hyper-activated microglia. Here we have investigated the hitherto unknown effects of capsaicin (cap) - a transient receptor potential vanilloid 1 (TRPV1) agonist- in murine primary microglia, organotypic hippocampal slice cultures (OHSCs) and human primary monocytes.

View Article and Find Full Text PDF

Background: Hyperactivation of microglia is considered to be a key hallmark of brain inflammation and plays a critical role in regulating neuroinflammatory events. Neuroinflammatory responses in microglia represent one of the major risk factors for various neurodegenerative diseases. One of the strategies to protect the brain and slow down the progression of these neurodegenerative diseases is by consuming diet enriched in anti-oxidants and polyphenols.

View Article and Find Full Text PDF

Background: Microglia recognize pathogen-associated molecular patterns such as double-stranded RNA (dsRNA) present in some viruses. Polyinosinic-polycytidylic acid [poly(I:C)] is a synthetic analog of dsRNA that activates different molecules, such as retinoic acid-inducible gene I, melanoma differentiation-associated gene 5, and toll-like receptor-3 (TLR3). Poly(I:C) increases the expression of different cytokines in various cell types.

View Article and Find Full Text PDF

MiRNAs, a family of small non-coding RNAs, have emerged as novel post-transcriptional regulators of numerous cellular responses. Although the involvement of miRNAs in the regulation of neuroinflammation in various neurological diseases has been previously studied, their role in the production of inflammatory mediators during microglia activation is poorly understood. In this study, the role of miR-26a has been investigated in the modulation of inflammatory response in cultured microglia.

View Article and Find Full Text PDF

Cryptolepine, an indoloquinoline alkaloid in Cryptolepis sanguinolenta, has anti-inflammatory property. In this study, we aimed to evaluate the effects of cryptolepine on lipopolysaccharide (LPS)- induced neuroinflammation in rat microglia and its potential mechanisms. Microglial activation was induced by stimulation with LPS, and the effects of cryptolepine pretreatment on microglial activation and production of proinflammatory mediators, PGE2/COX-2, microsomal prostaglandin E2 synthase and nitric oxide/iNOS were investigated.

View Article and Find Full Text PDF

Cryptolepis sanguinolenta and its bioactive alkaloid, cryptolepine have shown anti-inflammatory activity. However, the underlying mechanism of anti-inflammatory action in neuronal cells has not been investigated. In the present study we evaluated an extract of C.

View Article and Find Full Text PDF

Given that the spinal cord is capable of learning sensorimotor tasks and that dietary interventions can influence learning involving supraspinal centers, we asked whether the presence of omega-3 fatty acid docosahexaenoic acid (DHA) and the curry spice curcumin (Cur) by themselves or in combination with voluntary exercise could affect spinal cord learning in adult spinal mice. Using an instrumental learning paradigm to assess spinal learning we observed that mice fed a diet containing DHA/Cur performed better in the spinal learning paradigm than mice fed a diet deficient in DHA/Cur. The enhanced performance was accompanied by increases in the mRNA levels of molecular markers of learning, i.

View Article and Find Full Text PDF

Background: There is evidence from human and animal research that 5-hydroxytryptamine (5-HT) 3 receptor antagonists, particularly tropisetron, exert analgesic and anti-inflammatory activity. We have demonstrated that tropisetron inhibited lipopolysaccharide (LPS)-stimulated tumor necrosis factor (TNF)alpha and interleukin-(IL-)1beta release in primary human monocytes. The underlying mechanisms of these effects have not been investigated in detail so far.

View Article and Find Full Text PDF

Background: Microglia are considered a major target for modulating neuroinflammatory and neurodegenerative disease processes. Upon activation, microglia secrete inflammatory mediators that contribute to the resolution or to further enhancement of damage in the central nervous system (CNS). Therefore, it is important to study the intracellular pathways that are involved in the expression of the inflammatory mediators.

View Article and Find Full Text PDF

Omega-3-fatty acid DHA is a structural component of brain plasma membranes, thereby crucial for neuronal signaling; however, the brain is inefficient at synthesizing DHA. We have asked how levels of dietary n-3 fatty acids during brain growth would affect brain function and plasticity during adult life. Pregnant rats and their male offspring were fed an n-3 adequate diet or n-3 deficient diets for 15 weeks.

View Article and Find Full Text PDF

Resveratrol, a polyphenol present in grapes and red wine, has been studied due to its vast pharmacological activity. It has been demonstrated that resveratrol inhibits production of inflammatory mediators in different in vitro and in vivo models. Our group recently demonstrated that resveratrol reduced the production of prostaglandin (PG) E2 and 8-isoprostane in rat activated microglia.

View Article and Find Full Text PDF

Mangiferin, a naturally occurring glucosylxanthone, has potent antioxidant and anti-inflammatory properties, as demonstrated in several reports. However, very limited information is available on the effects of this natural polyphenol on microglial activation. Thus, the aim of this study was to examine whether mangiferin is able to reduce prostaglandin E(2) (PGE(2)) and 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)) production by lipopolysaccharide (LPS)-activated primary rat microglia.

View Article and Find Full Text PDF

Prostaglandin E2 (PGE2) is among the most important mediators involved in neuroinflammatory processes. The final step of its synthesis is regulated by enzymes termed prostaglandin E2 synthases (PGES). Three PGES are known, cytosolic (c)PGES, membrane-associated (m)PGES-1 and mPGES-2.

View Article and Find Full Text PDF

Background: Neuroinflammatory responses are triggered by diverse ethiologies and can provide either beneficial or harmful results. Microglial cells are the major cell type involved in neuroinflammation, releasing several mediators, which contribute to the neuronal demise in several diseases including cerebral ischemia and neurodegenerative disorders. Attenuation of microglial activation has been shown to confer protection against different types of brain injury.

View Article and Find Full Text PDF

Inhibition of neuronal cyclooxygenase-2 (COX-2) and hence prostaglandin E2 (PGE2) synthesis by non-steroidal anti-inflammatory drugs has been suggested to protect neuronal cells in a variety of pathophysiological situations including Alzheimer's disease and ischemic stroke. Ascorbic acid (vitamin C) has also been shown to protect cerebral tissue in a variety of experimental conditions, which has been attributed to its antioxidant capacity. In the present study, we show that ascorbic acid dose-dependently inhibited interleukin-1beta (IL-1beta)-mediated PGE2 synthesis in the human neuronal cell line, SK-N-SH.

View Article and Find Full Text PDF