Salt stress is one of the most severe environmental stresses limiting the productivity of crops, including rice. However, there is a lack of information on how salt-stress sensitivity varies across different developmental stages in rice. In view of this, a comparative evaluation of contrasting rice varieties CSR36 (salt tolerant) and Jaya (salt sensitive) was conducted, wherein NaCl stress (50 mM) was independently given either at seedling (S-stage), tillering (T-stage), flowering (F-stage), seed-setting (SS-stage) or throughout plant growth, from seedling till maturity.
View Article and Find Full Text PDFThe selective removal of pollutants from water bodies is regarded as a conciliation between the rapid expansion of industrial activities and need of clean water for sustainability. Fluoride is one such geogenic pollutant, and various materials have already been reported. Developing an efficient field employable material is however a challenge.
View Article and Find Full Text PDFA visual strip has been developed for sensing iron in different aqueous samples like natural water and fruit juices. The sensor has been synthesized by UV-radiation induced graft polymerization of acrylamide monomer in microporous poly(propylene) base. For physical immobilization of iron selective reagent, the in situ polymerization of acrylamide has been carried out in the presence of 1,10-phenanthroline.
View Article and Find Full Text PDFA flat sheet sorbent with poly(hydroxamic acid) groups anchored on the microporous structure of poly(propylene) membrane was developed and applied for the preconcentration and determination of heavy elements from natural waters. The designing of the sorbent involved UV-irradiation induced graft polymerization of acrylamide using N,N'-methylene-bis-acrylamide (MBA) as the crosslinker on the poly(propylene) base followed by chemical modification of the grafted membrane to generate crosslinked poly(hydroxamic acid) (PHA) groups in its pores. The synthesized PHA-membrane was found to preconcentrate U, V, Cu, Cr, Fe and Pb quantitatively (95%) from aqueous samples over a wide pH range of 4-9.
View Article and Find Full Text PDFA colorimetric biosensor for convenient quantification of ethanol and methanol is described. The biosensor utilizes a 'one-pot' nanocomposite consisting of Fe3O4 magnetic nanoparticles (MNPs) and alcohol oxidase (Al Ox) simultaneously entrapped in large pore sized mesocellular silica. Al Ox immobilized in the silica generates H2O2 in the presence of alcohol in a sample, which subsequently activates MNPs in the mesopores of the silica to convert a colorimetric substrate into a colored product.
View Article and Find Full Text PDFThe feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated.
View Article and Find Full Text PDFBiosens Bioelectron
October 2010
A novel optical biosensor for detecting target DNA, utilizing gold nanorods (GNRs) as molecular probes is demonstrated. This sensor is based on simultaneous biorecognition-mediated hybridization of target DNA in a sandwich type manner with two different capture probe DNA sequences modified separately with identical sets of GNRs, which leads to aggregation of GNRs. The hybridization induced aggregation as revealed by TEM analysis, promotes the modulation of surface plasmon resonance of GNRs, which forms the basis of complementary target DNA detection from the Chlamydia trachomatis pathogen.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
July 2010
The applicability of low-cost lignocellulosic biosorbent-coir pith, for removal of cobalt (II) from aqueous solutions using batch adsorption studies has been explored herein. Adsorption characteristics of coir pith were investigated systematically by varying the experimental parameters such as, solution pH, initial metal ion concentration, contact time, adsorbent dose and temperature. The studies revealed that optimum adsorption of cobalt onto coir pith occurred in the pH range of 4.
View Article and Find Full Text PDFWe describe here a greatly simplified colorimetric detection method to identify PCR-amplified nucleic acids. Our method relies on the PCR product having thiol group at one end, which is generated by employing thiolated PCR primer. After PCR amplification reaction, unmodified gold nanoparticles (AuNPs) are added into the reaction tube followed by the addition of NaCl to induce the aggregation of AuNPs.
View Article and Find Full Text PDFA novel method of engineering lignocellulosic biosorbent- coir pith (CP) by incorporation of nickel hexacyanoferrate (NiHCF), also referred to as Prussian blue analogue (PBA) inside its porous matrix is reported. Structural characterization confirmed the successful synthesis of NiHCF in the coir pith matrix. Sorption capacity of coir pith (CP) before and after loading of NiHCF was investigated for cesium (Cs) in batch equilibrium studies.
View Article and Find Full Text PDFCoir pith was chemically modified for the adsorption of cobalt(II) ions from aqueous solution. Chemical modification was done by esterification using succinic anhydride followed by activation with NaHCO(3) in order to improve the adsorption of Co(II). Adsorptive removal of Co(II) from aqueous solution onto modified coir pith was evaluated in batch studies under varying conditions of agitation time and metal ion concentration to assess the kinetic and equilibrium parameters.
View Article and Find Full Text PDFBasic aspects of uranium adsorption by coir pith have been investigated by batch equilibration. The influence of different experimental parameters such as final solution pH, adsorbent dosage, sorption time, temperature and various concentrations of uranium on uptake were evaluated. Maximum uranium adsorption was observed in the pH range 4.
View Article and Find Full Text PDF