Publications by authors named "Harshad Vishwasrao"

Article Synopsis
  • Deep neural networks can enhance fluorescence microscopy image quality, but traditional CNN methods are slow and specific to individual experiments.
  • The study introduces a new model called Convolutional Neural Network Transformer (CNNT) that improves image denoising and reduces training time.
  • CNNT can adapt quickly to different microscopes by only needing to fine-tune on a few image pairs, outperforming existing models like 3D-RCAN and Noise2Fast in various microscopy techniques.
View Article and Find Full Text PDF

Deep neural networks have been applied to improve the image quality of fluorescence microscopy imaging. Previous methods are based on convolutional neural networks (CNNs) which generally require more time-consuming training of separate models for each new imaging experiment, impairing the applicability and generalization. Once the model is trained (typically with tens to hundreds of image pairs) it can then be used to enhance new images that are like the training data.

View Article and Find Full Text PDF

Stereocilia are unidirectional F-actin-based cylindrical protrusions on the apical surface of inner ear hair cells and function as biological mechanosensors of sound and acceleration. Development of functional stereocilia requires motor activities of unconventional myosins to transport proteins necessary for elongating the F-actin cores and to assemble the mechanoelectrical transduction (MET) channel complex. However, how each myosin localizes in stereocilia using the energy from ATP hydrolysis is only partially understood.

View Article and Find Full Text PDF

Stereocilia are unidirectional F-actin-based cylindrical protrusions on the apical surface of inner ear hair cells and function as biological mechanosensors of sound and acceleration. Development of functional stereocilia requires motor activities of unconventional myosins to transport proteins necessary for elongating the F-actin cores and to assemble the mechanoelectrical transduction (MET) channel complex. However, how each myosin localizes in stereocilia using the energy from ATP hydrolysis is only partially understood.

View Article and Find Full Text PDF

The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging.

View Article and Find Full Text PDF

3D spheroids have emerged as powerful drug discovery tools given their high-throughput screening (HTS) compatibility. Here, we describe a method for generating functional neural spheroids by cell-aggregation of differentiated human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes at cell type compositions mimicking specific regions of the human brain. Recordings of intracellular calcium oscillations were used as functional assays, and the utility of this spheroids system was shown through disease modeling, drug testing, and formation of assembloids to model neurocircuitry.

View Article and Find Full Text PDF

The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging.

View Article and Find Full Text PDF

During wound healing and surgical implantation, the body establishes a delicate balance between immune activation to fight off infection and clear debris and immune tolerance to control reactivity against self-tissue. Nonetheless, how such a balance is achieved is not well understood. Here we describe that pro-regenerative biomaterials for muscle injury treatment promote the proliferation of a BATF3-dependent CD103XCR1CD206CD301b dendritic cell population associated with cross-presentation and self-tolerance.

View Article and Find Full Text PDF
Article Synopsis
  • Protrusions at the leading-edge of cells are crucial for sensing cues during spreading and movement, and recent studies suggest they can coil around extracellular fibers.
  • A combined theoretical and experimental study was conducted to understand the coiling process of these protrusions on fibers of varying shapes, focusing on the role of membrane proteins and actin polymerization.
  • The findings indicate that coiling occurs on circular fibers but not on flattened, elliptical ones, offering a theoretical framework supported by experimental visualization techniques.
View Article and Find Full Text PDF

Tissue clearing of whole intact organs has enhanced imaging by enabling the exploration of tissue structure at a subcellular level in three-dimensional space. Although clearing and imaging of the whole organ have been used to study tissue biology, the microenvironment in which cells evolve to adapt to biomaterial implants or allografts in the body is poorly understood. Obtaining high-resolution information from complex cell-biomaterial interactions with volumetric landscapes represents a key challenge in the fields of biomaterials and regenerative medicine.

View Article and Find Full Text PDF

The axial resolution of three-dimensional structured illumination microscopy (3D SIM) is limited to ∼300 nm. Here we present two distinct, complementary methods to improve axial resolution in 3D SIM with minimal or no modification to the optical system. We show that placing a mirror directly opposite the sample enables four-beam interference with higher spatial frequency content than 3D SIM illumination, offering near-isotropic imaging with ∼120-nm lateral and 160-nm axial resolution.

View Article and Find Full Text PDF

We present Richardson-Lucy network (RLN), a fast and lightweight deep learning method for three-dimensional fluorescence microscopy deconvolution. RLN combines the traditional Richardson-Lucy iteration with a fully convolutional network structure, establishing a connection to the image formation process and thereby improving network performance. Containing only roughly 16,000 parameters, RLN enables four- to 50-fold faster processing than purely data-driven networks with many more parameters.

View Article and Find Full Text PDF

Fluorescence microscopy has evolved from a purely observational tool to a platform for quantitative, hypothesis-driven research. As such, the demand for faster and less phototoxic imaging modalities has spurred a rapid growth in light sheet fluorescence microscopy (LSFM). By restricting the excitation to a thin plane, LSFM reduces the overall light dose to a specimen while simultaneously improving image contrast.

View Article and Find Full Text PDF

We demonstrate diffraction-limited and super-resolution imaging through thick layers (tens-hundreds of microns) of BIO-133, a biocompatible, UV-curable, commercially available polymer with a refractive index (RI) matched to water. We show that cells can be directly grown on BIO-133 substrates without the need for surface passivation and use this capability to perform extended time-lapse volumetric imaging of cellular dynamics 1) at isotropic resolution using dual-view light-sheet microscopy, and 2) at super-resolution using instant structured illumination microscopy. BIO-133 also enables immobilization of 1) Drosophila tissue, allowing us to track membrane puncta in pioneer neurons, and 2) Caenorhabditis elegans, which allows us to image and inspect fine neural structure and to track pan-neuronal calcium activity over hundreds of volumes.

View Article and Find Full Text PDF

Fast-dissociating, specific antibodies are single-molecule imaging probes that transiently interact with their targets and are used in biological applications including image reconstruction by integrating exchangeable single-molecule localization (IRIS), a multiplexable super-resolution microscopy technique. Here, we introduce a semi-automated screen based on single-molecule total internal reflection fluorescence (TIRF) microscopy of antibody-antigen binding, which allows for identification of fast-dissociating monoclonal antibodies directly from thousands of hybridoma cultures. We develop monoclonal antibodies against three epitope tags (FLAG-tag, S-tag, and V5-tag) and two F-actin crosslinking proteins (plastin and espin).

View Article and Find Full Text PDF

The Zebrafish Posterior Lateral Line primordium migrates in a channel between the skin and somites. Its migration depends on the coordinated movement of its mesenchymal-like leading cells and trailing cells, which form epithelial rosettes, or protoneuromasts. We describe a superficial population of flat primordium cells that wrap around deeper epithelialized cells and extend polarized lamellipodia to migrate apposed to the overlying skin.

View Article and Find Full Text PDF

The contrast and resolution of images obtained with optical microscopes can be improved by deconvolution and computational fusion of multiple views of the same sample, but these methods are computationally expensive for large datasets. Here we describe theoretical and practical advances in algorithm and software design that result in image processing times that are tenfold to several thousand fold faster than with previous methods. First, we show that an 'unmatched back projector' accelerates deconvolution relative to the classic Richardson-Lucy algorithm by at least tenfold.

View Article and Find Full Text PDF

We combined instant structured illumination microscopy (iSIM) with total internal reflection fluorescence microscopy (TIRFM) in an approach referred to as instant TIRF-SIM, thereby improving the lateral spatial resolution of TIRFM to 115 ± 13 nm without compromising speed, and enabling imaging frame rates up to 100 Hz over hundreds of time points. We applied instant TIRF-SIM to multiple live samples and achieved rapid, high-contrast super-resolution imaging close to the coverslip surface.

View Article and Find Full Text PDF

Subunit vaccines have been investigated in over 1000 clinical trials of cancer immunotherapy, but have shown limited efficacy. Nanovaccines may improve efficacy but have rarely been clinically translated. By conjugating molecular vaccines with Evans blue (EB) into albumin-binding vaccines (AlbiVax), here we develop clinically promising albumin/AlbiVax nanocomplexes that self-assemble in vivo from AlbiVax and endogenous albumin for efficient vaccine delivery and potent cancer immunotherapy.

View Article and Find Full Text PDF

Nanomedicines that co-deliver DNA, RNA, and peptide therapeutics are highly desirable yet remain underdeveloped for cancer theranostics. Herein, we report self-assembled intertwining DNA-RNA nanocapsules (iDR-NCs) that efficiently delivered synergistic DNA CpG and short hairpin RNA (shRNA) adjuvants, as well as tumor-specific peptide neoantigens into antigen presenting cells (APCs) in lymph nodes for cancer immunotherapy. These nanovaccines were prepared by (1) producing tandem CpG and shRNA via concurrent rolling circle replication and rolling circle transcription, (2) self-assembling CpG and shRNA into DNA-RNA microflowers, (3) shrinking microflowers into iDR-NCs using PEG-grafted cationic polypeptides, and (4) physically loading neoantigen into iDR-NCs.

View Article and Find Full Text PDF

Light-sheet fluorescence microscopy (LSFM) enables high-speed, high-resolution, and gentle imaging of live specimens over extended periods. Here we describe a technique that improves the spatiotemporal resolution and collection efficiency of LSFM without modifying the underlying microscope. By imaging samples on reflective coverslips, we enable simultaneous collection of four complementary views in 250 ms, doubling speed and improving information content relative to symmetric dual-view LSFM.

View Article and Find Full Text PDF

Chromatin modification is traditionally assessed in biochemical assays that provide average measurements of static events given that the analysis requires components from many cells. Microscopy can visualize single cells, but the cell body and organelles can hamper staining and visualization of the nucleus. Normally, chromatin is visualized by immunostaining a fixed sample or by expressing exogenous fluorescently tagged proteins in a live cell.

View Article and Find Full Text PDF

Neurotrophins control the development and adult plasticity of the vertebrate nervous system. Failure to identify invertebrate neurotrophin orthologs, however, has precluded studies in invertebrate models, limiting our understanding of fundamental aspects of neurotrophin biology and function. We identified a neurotrophin (ApNT) and Trk receptor (ApTrk) in the mollusk Aplysia and found that they play a central role in learning-related synaptic plasticity.

View Article and Find Full Text PDF

Using two-photon fluorescence anisotropy imaging of actin-GFP, we have developed a method for imaging the actin polymerization state that is applicable to a broad range of experimental systems extending from fixed cells to live animals. The incorporation of expressed actin-GFP monomers into endogenous actin polymers enables energy migration FRET (emFRET, or homoFRET) between neighboring actin-GFPs. This energy migration reduces the normally high polarization of the GFP fluorescence.

View Article and Find Full Text PDF