Publications by authors named "Harshad R Velankar"

The growing demand for biofuels such as bioethanol has led to the need for identifying alternative feedstock instead of conventional substrates like molasses, etc. Lignocellulosic biomass is a relatively inexpensive feedstock that is available in abundance, however, its conversion to bioethanol involves a multistep process with different unit operations such as size reduction, pretreatment, saccharification, fermentation, distillation, etc. The saccharification or enzymatic hydrolysis of cellulose to glucose involves a complex family of enzymes called cellulases that are usually fungal in origin.

View Article and Find Full Text PDF

Cellulolytic enzymes can readily access the cellulosic component of lignocellulosic biomass after the removal of lignin during biomass pretreatment. The enzymatic hydrolysis of cellulose is necessary for generating monomeric sugars, which are then fermented into ethanol. In our study, a combination of a deep eutectic (DE) mixture (of 2-aminoethanol and tetra-n-butyl ammonium bromide) and a cyclic ether (tetrahydrofuran) was used for selective delignification of rice straw (RS) under mild conditions (100 °C).

View Article and Find Full Text PDF

Biosurfactants, amphiphilic compounds that reduce interfacial tension in oil-aqueous mixtures, are used in the petroleum, pharmaceutical, food, and agriculture industries. Fermentative production of biosurfactants requires expensive sugar or lipid substrates. Lignocellulosic biomass is a relatively cheap and abundant agricultural residue that can be used as an alternative substrate.

View Article and Find Full Text PDF

A novel ternary system consisting of deep eutectic solvent-alcohol (DES-OL) mixture was developed for the effective delignification of lignocellulosic biomass. Optimization studies included selecting suitable co-solvent (among n-BuOH, n-PrOH & EtOAc) for treating biomass (rice husk, rice straw and wheat straw), altering the DES-to-alcohol ratio (2:1, 1:1 and 1:2) as well as the reaction temperature (50, 80 and 120 °C). The highest delignification (∼50%) was observed using n-butanol assisted DES (ChCl: OA) at a ratio of 2:1, with high solid loading of 15% (w/v) at 120 °C (∼1.

View Article and Find Full Text PDF

Background: Lignocellulosic ethanol production involves major steps such as thermochemical pretreatment of biomass, enzymatic hydrolysis of pre-treated biomass and the fermentation of released sugars into ethanol. At least two different organisms are conventionally utilized for producing cellulolytic enzymes and for ethanol production through fermentation, whereas in the present study a single yeast isolate with the capacity to simultaneously produce cellulases and xylanases and ferment the released sugars into ethanol and xylitol has been described.

Results: A yeast strain isolated from soil samples and identified as Candida tropicalis MTCC 25057 expressed cellulases and xylanases over a wide range of temperatures (32 and 42 °C) and in the presence of different cellulosic substrates [carboxymethylcellulose and wheat straw (WS)].

View Article and Find Full Text PDF