Single-stranded DNA gaps form within the chromosome during replication, repair and recombination. However, information about the extent of ssDNA creation in the genome is limited. To complement a recent whole-genome sequencing study revealing ssDNA gap genomic distribution, size, and frequency, we used fluorescence microscopy to monitor the spatiotemporal dynamics of single-stranded DNA within live cells.
View Article and Find Full Text PDFR-loop proteins present a stable and robust blockade to the progression of a DNA replication fork during S-phase. The consequences of this block can include mutagenesis and other irreversible chromosomal catastrophes, causing genomic instability and disease. As such, further investigation into the molecular mechanisms underlying R-loop protein resolution is warranted.
View Article and Find Full Text PDFElongation by RNA polymerase is dynamically modulated by accessory factors. The transcription-repair coupling factor (TRCF) recognizes paused/stalled RNAPs and either rescues transcription or initiates transcription termination. Precisely how TRCFs choose to execute either outcome remains unclear.
View Article and Find Full Text PDFHelicases involved in genomic maintenance are a class of nucleic-acid dependent ATPases that convert the energy of ATP hydrolysis into physical work to execute irreversible steps in DNA replication, repair, and recombination. Prokaryotic helicases provide simple models to understand broadly conserved molecular mechanisms involved in manipulating nucleic acids during genome maintenance. Our understanding of the catalytic properties, mechanisms of regulation, and roles of prokaryotic helicases in DNA metabolism has been assembled through a combination of genetic, biochemical, and structural methods, further refined by single-molecule approaches.
View Article and Find Full Text PDFSeveral functions have been proposed for the Escherichia coli DNA polymerase IV (pol IV). Although much research has focused on a potential role for pol IV in assisting pol III replisomes in the bypass of lesions, pol IV is rarely found at the replication fork in vivo. Pol IV is expressed at increased levels in E.
View Article and Find Full Text PDFIn the model organism Escherichia coli, helix distorting lesions are recognized by the UvrAB damage surveillance complex in the global genomic nucleotide excision repair pathway (GGR). Alternately, during transcription-coupled repair (TCR), UvrA is recruited to Mfd at sites of RNA polymerases stalled by lesions. Ultimately, damage recognition is mediated by UvrA, followed by verification by UvrB.
View Article and Find Full Text PDFThe Escherichia coli transcription-repair coupling factor Mfd displaces stalled RNA polymerase and delivers the stall site to the nucleotide excision repair factors UvrAB for damage detection. Whether this handoff from RNA polymerase to UvrA occurs via the Mfd-UvrA-UvrB complex or alternate reaction intermediates in cells remains unclear. Here, we visualise Mfd in actively growing cells and determine the catalytic requirements for faithful recruitment of nucleotide excision repair proteins.
View Article and Find Full Text PDFLimited experimental tools are available to study the consequences of collisions between DNA-bound molecular machines. Here, we repurpose a catalytically inactivated Cas9 (dCas9) construct as a generic, novel, targetable protein-DNA roadblock for studying mechanisms underlying enzymatic activities on DNA substrates in vitro. We illustrate the broad utility of this tool by demonstrating replication fork arrest by the specifically bound dCas9-guideRNA complex to arrest viral, bacterial and eukaryotic replication forks in vitro.
View Article and Find Full Text PDFUnderstanding how multiprotein complexes function in cells requires detailed quantitative understanding of their association and dissociation kinetics. Analysis of the heterogeneity of binding lifetimes enables the interrogation of the various intermediate states formed during the reaction. Single-molecule fluorescence imaging permits the measurement of reaction kinetics inside living organisms with minimal perturbation.
View Article and Find Full Text PDFThe RecA protein orchestrates the cellular response to DNA damage via its multiple roles in the bacterial SOS response. Lack of tools that provide unambiguous access to the various RecA states within the cell have prevented understanding of the spatial and temporal changes in RecA structure/function that underlie control of the damage response. Here, we develop a monomeric C-terminal fragment of the λ repressor as a novel fluorescent probe that specifically interacts with RecA filaments on single-stranded DNA (RecA*).
View Article and Find Full Text PDFIn bacteria, genetic recombination is a major mechanism for DNA repair. The RecF, RecO and RecR proteins are proposed to initiate recombination by loading the RecA recombinase onto DNA. However, the biophysical mechanisms underlying this process remain poorly understood.
View Article and Find Full Text PDFRolling-circle DNA amplification is a powerful tool employed in biotechnology to produce large from small amounts of DNA. This mode of DNA replication proceeds via a DNA topology that resembles a replication fork, thus also providing experimental access to the molecular mechanisms of DNA replication. However, conventional templates do not allow controlled access to multiple fork topologies, which is an important factor in mechanistic studies.
View Article and Find Full Text PDFDespite significant advances toward accurate tuning of the size and shape of colloidal nanoparticles, the precise control of the surface chemistry thereof remains a grand challenge. It is desirable to conjugate functional bio-molecules onto the selected facets of nanoparticles owing to the versatile capabilities rendered by the molecules. We report here facet-selective conjugation of DNA molecules onto upconversion nanoparticles ligand competition reaction.
View Article and Find Full Text PDFDuring transcription elongation, bacterial RNA polymerase (RNAP) can pause, backtrack or stall when transcribing template DNA. Stalled transcription elongation complexes at sites of bulky lesions can be rescued by the transcription terminator Mfd. The molecular mechanisms of Mfd recruitment to transcription complexes in vivo remain to be elucidated, however.
View Article and Find Full Text PDFCells use a suite of specialized enzymes to repair chromosomal double-strand breaks (DSBs). Two recent studies describe how single-molecule fluorescence imaging techniques are used in the direct visualization of some of the key molecular steps involved. De Tullio et al.
View Article and Find Full Text PDFBiochem Soc Trans
February 2018
Genomic DNA is constantly under threat from intracellular and environmental factors that damage its chemical structure. Uncorrected DNA damage may impede cellular propagation or even result in cell death, making it critical to restore genomic integrity. Decades of research have revealed a wide range of mechanisms through which repair factors recognize damage and co-ordinate repair processes.
View Article and Find Full Text PDFTagging of individual proteins with genetically encoded fluorescent proteins (FPs) has been used extensively to study localization and interactions in live cells. Recent developments in single-molecule localization microscopy have enabled the dynamic visualization of individual tagged proteins inside living cells. However, tagging proteins with FPs is not without problems: formation of insoluble aggregates and inhibition of native functions of the protein are well-known issues.
View Article and Find Full Text PDFSpatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage.
View Article and Find Full Text PDFRecent technical advances have made it possible to visualize single molecules inside live cells. Microscopes with single-molecule sensitivity enable the imaging of low-abundance proteins, allowing for a quantitative characterization of molecular properties. Such data sets contain information on a wide spectrum of important molecular properties, with different aspects highlighted in different imaging strategies.
View Article and Find Full Text PDFBackground: A key challenge in interdisciplinary research is choosing the best approach from a large number of techniques derived from different disciplines and their interfaces.
Results: To address this challenge in the area of Biophysics and Structural Biology, we have designed a graduate level course to teach students insightful use of experimental biophysical approaches in relationship to addressing biological questions related to biomolecular interactions and dynamics. A weekly seminar and data and literature club are used to compliment the training in class.
How human DNA repair proteins survey the genome for UV-induced photoproducts remains a poorly understood aspect of the initial damage recognition step in nucleotide excision repair (NER). To understand this process, we performed single-molecule experiments, which revealed that the human UV-damaged DNA-binding protein (UV-DDB) performs a 3D search mechanism and displays a remarkable heterogeneity in the kinetics of damage recognition. Our results indicate that UV-DDB examines sites on DNA in discrete steps before forming long-lived, nonmotile UV-DDB dimers (DDB1-DDB2)2 at sites of damage.
View Article and Find Full Text PDFNanotechnology based on the highly specific pairing of nucleobases in DNA has been used to generate a wide variety of well-defined two- and three-dimensional assemblies, both static and dynamic. However, control over the junction angles to achieve them has been limited. To achieve higher order assemblies, the strands of the DNA duplex are typically made to deviate at junctions with configurations based on crossovers or non-DNA moieties.
View Article and Find Full Text PDF