Publications by authors named "Harsh Kavi"

Metazoan linker histones are essential for development and play crucial roles in organization of chromatin, modification of epigenetic states and regulation of genetic activity. Vertebrates express multiple linker histone H1 isoforms, which may function redundantly. In contrast, H1 isoforms are not present in Dipterans, including D.

View Article and Find Full Text PDF

Linker histone H1 is among the most abundant components of chromatin. H1 has profound effects on chromosome architecture. H1 also helps to tether DNA- and histone-modifying enzymes to chromatin.

View Article and Find Full Text PDF

Chromatin structure and activity can be modified through ATP-dependent repositioning of nucleosomes and posttranslational modifications of core histone tails within nucleosome core particles and by deposition of linker histones into the oligonucleosome fiber. The linker histone H1 is essential in metazoans. It has a profound effect on organization of chromatin into higher-order structures and on recruitment of histone-modifying enzymes to chromatin.

View Article and Find Full Text PDF

Eukaryotic genomes harbor transposable elements and other repetitive sequences that must be silenced. Small RNA interference pathways play a major role in their repression. Here, we reveal another mechanism for silencing these sequences in Drosophila.

View Article and Find Full Text PDF

Background: Heterochromatin is the tightly packaged dynamic region of the eukaryotic chromosome that plays a vital role in cellular processes such as mitosis and meiotic recombination. Recent experiments in Schizosaccharomyces pombe have revealed the structure of centromeric heterochromatin is affected in RNAi pathway mutants. It has also been shown in fission yeast that the heterochromatin barrier is traversed by RNA Pol II and that the passage of RNA Pol II through heterochromatin is important for heterochromatin structure.

View Article and Find Full Text PDF

Background: CG11033 (dKDM2) is the Drosophila homolog of the gene KDM2B. dKDM2 has been known to possess histone lysine demethylase activity towards H3K36me2 in cell lines and it regulates H2A ubiquitination. The human homolog of the gene has dual activity towards H3K36me2 as well as H3K4me3, and plays an important role in cellular senescence.

View Article and Find Full Text PDF

RNA interference (RNAi) is the technique employing double-stranded RNA to target the destruction of homologous messenger RNAs. It has gained wide usage in genetics. While having the potential for many practical applications, it is a reflection of a much broader spectrum of small RNA-mediated processes in the cell.

View Article and Find Full Text PDF

In Drosophila, the RNA interference (RNAi) genes participate in Polycomb (Pc)-mediated transgene silencing. Recently, the involvement of the RNAi genes in Pc silencing, pairing-sensitive silencing and long-range contacts among Pc-associated sequences has been explored. These Pc-associated sequences are involved with the control of the proper expression of developmental HOX genes.

View Article and Find Full Text PDF

The sex chromosomes of many species differ in dosage but the total gene expression output is similar, a phenomenon referred to as dosage compensation. Previously, diverse mechanisms were postulated to account for compensation in distantly related taxa. However, two recent papers present evidence that dosage compensation in Drosophila, mammals and nematodes share the property that there is an approximately two-fold upregulation of the single active X chromosome in each case.

View Article and Find Full Text PDF

The RNAi machinery is not only involved with post-transcriptional degradation of messenger RNAs, but also used for targeting of chromatin changes associated with transcriptional silencing. Two recent papers determine the global patterns of gene expression and chromatin modifications produced by the RNAi machinery in fission yeast.(9, 10) The major sites include the outer centromere repeats, the mating-type locus and subtelomeric regions.

View Article and Find Full Text PDF

Knowledge of the role of RNA in affecting gene expression has expanded in the past several years. Small RNAs serve as homology guides to target messenger RNAs for destruction at the post-transcriptional level in the experimental technique known as RNA interference and in the silencing of some transgenes. These small RNAs are also involved in sequence-specific targeting of chromatin modifications for transcriptional silencing of transgenes, transposable elements, heterochromatin and some cases of Polycomb-mediated gene silencing.

View Article and Find Full Text PDF

Mutation of the multi-KH domain protein DPP1, which has single-stranded nucleic acid binding activity, suppresses heterochromatin-mediated silencing in Drosophila; it also disrupts the modification of histone H3 at lysine 9, and association of heterochromatin protein 1 on the heterochromatic regions, suggesting a role for DDP1 in heterochromatin formation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionse261kp5ism7tb9eduijqbpk58vrdo88): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once